Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59474 by rahul 19 last updated on 10/May/19

1) ∫_0 ^(10π) ([sec^(−1) x]+[cot^(−1) x] ) dx = ?  2)area bounded by curve y=ln(x) and  the lines y=0,y=ln(3) and x=0 is  equal to ?

$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left(\left[\mathrm{sec}^{−\mathrm{1}} {x}\right]+\left[\mathrm{co}{t}^{−\mathrm{1}} {x}\right]\:\right)\:{dx}\:=\:? \\ $$$$\left.\mathrm{2}\right){area}\:{bounded}\:{by}\:{curve}\:{y}={ln}\left({x}\right)\:{and} \\ $$$${the}\:{lines}\:{y}=\mathrm{0},{y}={ln}\left(\mathrm{3}\right)\:{and}\:{x}=\mathrm{0}\:{is} \\ $$$${equal}\:{to}\:? \\ $$

Commented by tanmay last updated on 10/May/19

1) from graph it cleaer now...  [cot^(−1) x]=0    when x [0,10π]  ∫_0 ^(10π) [sec^(−1) x]dx+∫_0 ^(10π) [cot^(−1) x]dx  ∫_0 ^(sec1) [sec^(−1) x]dx+∫_(sec1) ^(10π) [sec^(−1) x]dx  =∫_0 ^(sec1) 0×dx+∫_(sec1) ^(10π) 1×dx  =0+(10π−sec1)  =10π−sec1

$$\left.\mathrm{1}\right)\:{from}\:{graph}\:{it}\:{cleaer}\:{now}... \\ $$$$\left[{cot}^{−\mathrm{1}} {x}\right]=\mathrm{0}\:\:\:\:{when}\:{x}\:\left[\mathrm{0},\mathrm{10}\pi\right] \\ $$$$\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left[{sec}^{−\mathrm{1}} {x}\right]{dx}+\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left[{cot}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$\int_{\mathrm{0}} ^{{sec}\mathrm{1}} \left[{sec}^{−\mathrm{1}} {x}\right]{dx}+\int_{{sec}\mathrm{1}} ^{\mathrm{10}\pi} \left[{sec}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{{sec}\mathrm{1}} \mathrm{0}×{dx}+\int_{{sec}\mathrm{1}} ^{\mathrm{10}\pi} \mathrm{1}×{dx} \\ $$$$=\mathrm{0}+\left(\mathrm{10}\pi−{sec}\mathrm{1}\right) \\ $$$$=\mathrm{10}\pi−{sec}\mathrm{1} \\ $$

Commented by tanmay last updated on 10/May/19

Commented by tanmay last updated on 10/May/19

Answered by tanmay last updated on 10/May/19

2)∫_0 ^(ln3) xdy  y=lnx   x=e^y   ∫_0 ^(ln3) e^y dy→∣e^y ∣_0 ^(ln3)   =e^(ln3) −1  =3−1=2

$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{{ln}\mathrm{3}} {xdy} \\ $$$${y}={lnx}\:\:\:{x}={e}^{{y}} \\ $$$$\int_{\mathrm{0}} ^{{ln}\mathrm{3}} {e}^{{y}} {dy}\rightarrow\mid{e}^{{y}} \mid_{\mathrm{0}} ^{{ln}\mathrm{3}} \\ $$$$={e}^{{ln}\mathrm{3}} −\mathrm{1} \\ $$$$=\mathrm{3}−\mathrm{1}=\mathrm{2} \\ $$$$ \\ $$

Commented by tanmay last updated on 10/May/19

ans of 2 pls check

$${ans}\:{of}\:\mathrm{2}\:{pls}\:{check} \\ $$

Commented by rahul 19 last updated on 10/May/19

thanks sir.

$${thanks}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com