Question Number 59474 by rahul 19 last updated on 10/May/19 | ||
$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left(\left[\mathrm{sec}^{−\mathrm{1}} {x}\right]+\left[\mathrm{co}{t}^{−\mathrm{1}} {x}\right]\:\right)\:{dx}\:=\:? \\ $$$$\left.\mathrm{2}\right){area}\:{bounded}\:{by}\:{curve}\:{y}={ln}\left({x}\right)\:{and} \\ $$$${the}\:{lines}\:{y}=\mathrm{0},{y}={ln}\left(\mathrm{3}\right)\:{and}\:{x}=\mathrm{0}\:{is} \\ $$$${equal}\:{to}\:? \\ $$ | ||
Commented by tanmay last updated on 10/May/19 | ||
$$\left.\mathrm{1}\right)\:{from}\:{graph}\:{it}\:{cleaer}\:{now}... \\ $$$$\left[{cot}^{−\mathrm{1}} {x}\right]=\mathrm{0}\:\:\:\:{when}\:{x}\:\left[\mathrm{0},\mathrm{10}\pi\right] \\ $$$$\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left[{sec}^{−\mathrm{1}} {x}\right]{dx}+\int_{\mathrm{0}} ^{\mathrm{10}\pi} \left[{cot}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$\int_{\mathrm{0}} ^{{sec}\mathrm{1}} \left[{sec}^{−\mathrm{1}} {x}\right]{dx}+\int_{{sec}\mathrm{1}} ^{\mathrm{10}\pi} \left[{sec}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{{sec}\mathrm{1}} \mathrm{0}×{dx}+\int_{{sec}\mathrm{1}} ^{\mathrm{10}\pi} \mathrm{1}×{dx} \\ $$$$=\mathrm{0}+\left(\mathrm{10}\pi−{sec}\mathrm{1}\right) \\ $$$$=\mathrm{10}\pi−{sec}\mathrm{1} \\ $$ | ||
Commented by tanmay last updated on 10/May/19 | ||
Commented by tanmay last updated on 10/May/19 | ||
Answered by tanmay last updated on 10/May/19 | ||
$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{{ln}\mathrm{3}} {xdy} \\ $$$${y}={lnx}\:\:\:{x}={e}^{{y}} \\ $$$$\int_{\mathrm{0}} ^{{ln}\mathrm{3}} {e}^{{y}} {dy}\rightarrow\mid{e}^{{y}} \mid_{\mathrm{0}} ^{{ln}\mathrm{3}} \\ $$$$={e}^{{ln}\mathrm{3}} −\mathrm{1} \\ $$$$=\mathrm{3}−\mathrm{1}=\mathrm{2} \\ $$$$ \\ $$ | ||
Commented by tanmay last updated on 10/May/19 | ||
$${ans}\:{of}\:\mathrm{2}\:{pls}\:{check} \\ $$ | ||
Commented by rahul 19 last updated on 10/May/19 | ||
$${thanks}\:{sir}. \\ $$ | ||