Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74264 by last updated on 21/Nov/19

∫_0 ^x xe^x sin e^x e^x dx

$$\int_{\mathrm{0}} ^{{x}} {xe}^{{x}} \mathrm{sin}\:{e}^{{x}} {e}^{{x}} {dx} \\ $$

Commented by MJS last updated on 21/Nov/19

(1) dependent borders error  (2) do you mean xe^x sin (e^x e^x ) =xe^x sin e^(2x) ?    same problems with the cosinus−question

$$\left(\mathrm{1}\right)\:\mathrm{dependent}\:\mathrm{borders}\:\mathrm{error} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:{x}\mathrm{e}^{{x}} \mathrm{sin}\:\left(\mathrm{e}^{{x}} \mathrm{e}^{{x}} \right)\:={x}\mathrm{e}^{{x}} \mathrm{sin}\:\mathrm{e}^{\mathrm{2}{x}} ? \\ $$$$ \\ $$$$\mathrm{same}\:\mathrm{problems}\:\mathrm{with}\:\mathrm{the}\:\mathrm{cosinus}−\mathrm{question} \\ $$

Terms of Service

Privacy Policy