Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 8672 by swapnil last updated on 20/Oct/16

∫_0 ^∞ x.e^(−x^2 )  dx  evaluate above expression.

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{x}.\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx} \\ $$$$\mathrm{evaluate}\:\mathrm{above}\:\mathrm{expression}. \\ $$

Answered by 123456 last updated on 21/Oct/16

u=−x^2   du=−2xdx⇒xdx=−(du/2)  x=0,u=0  x=ε,u=−ε^2   ∫_0 ^∞ xe^(−x^2 ) dx=lim_(ε→∞) ∫_0 ^ε xe^(−x^2 ) dx  =lim_(ε→∞) −(1/2)∫_0 ^(−ε^2 ) e^u du  =lim_(ε→∞) (1/2)∫_(−ε^2 ) ^0 e^u du  =lim_(ε→∞) ((1−e^(−ε^2 ) )/2)  =(1/2)

$${u}=−{x}^{\mathrm{2}} \\ $$$${du}=−\mathrm{2}{xdx}\Rightarrow{xdx}=−\frac{{du}}{\mathrm{2}} \\ $$$${x}=\mathrm{0},{u}=\mathrm{0} \\ $$$${x}=\epsilon,{u}=−\epsilon^{\mathrm{2}} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{xe}^{−{x}^{\mathrm{2}} } {dx}=\underset{\epsilon\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{0}} {\overset{\epsilon} {\int}}{xe}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$=\underset{\epsilon\rightarrow\infty} {\mathrm{lim}}−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{−\epsilon^{\mathrm{2}} } {\int}}{e}^{{u}} {du} \\ $$$$=\underset{\epsilon\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}}\underset{−\epsilon^{\mathrm{2}} } {\overset{\mathrm{0}} {\int}}{e}^{{u}} {du} \\ $$$$=\underset{\epsilon\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}−{e}^{−\epsilon^{\mathrm{2}} } }{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by swapnil last updated on 21/Oct/16

is ε>0 ?

$$\mathrm{is}\:\epsilon>\mathrm{0}\:? \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com