Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52550 by Tawa1 last updated on 09/Jan/19

  ∫_0 ^( ∞)    (x/(e^x  − 1))  dx

$$\:\:\int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\:\:\mathrm{dx}\: \\ $$

Commented by maxmathsup by imad last updated on 11/Jan/19

let I =∫_0 ^∞   (x/(e^x −1))dx ⇒ I =∫_0 ^∞   ((xe^(−x) )/(1−e^(−x) ))dx =∫_0 ^∞  xe^(−x) (Σ_(n=0) ^∞  e^(−nx) )dx  =Σ_(n=0) ^∞   (∫_0 ^∞   x e^(−(n+1)x) dx)=Σ_(n=0) ^∞ A_n      A_n =∫_0 ^∞   x e^(−(n+1x) dx =_((n+1)x=t )    ∫_0 ^∞   (t/(n+1)) e^(−t)   (dt/(n+1)) =(1/((n+1)^2 ))∫_0 ^∞   t e^(−t) dt but  by parts ∫_0 ^∞  t e^(−t) dt =[−t e^(−t) ]_0 ^(+∞)  +∫ e^(−t) dt =[−e^(−t) ]_0 ^(+∞) =1 ⇒A_n =(1/((n+1)^2 )) ⇒  I =Σ_(n=0) ^∞  (1/((n+1)^2 )) =Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /6) .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}\:\Rightarrow\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xe}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }{dx}\:=\int_{\mathrm{0}} ^{\infty} \:{xe}^{−{x}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−\left({n}+\mathrm{1}\right){x}} {dx}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} {A}_{{n}} \:\:\: \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−\left({n}+\mathrm{1}{x}\right.} {dx}\:=_{\left({n}+\mathrm{1}\right){x}={t}\:} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}}{{n}+\mathrm{1}}\:{e}^{−{t}} \:\:\frac{{dt}}{{n}+\mathrm{1}}\:=\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}} {dt}\:{but} \\ $$$${by}\:{parts}\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}} {dt}\:=\left[−{t}\:{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \:+\int\:{e}^{−{t}} {dt}\:=\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} =\mathrm{1}\:\Rightarrow{A}_{{n}} =\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${I}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:. \\ $$$$ \\ $$

Answered by Smail last updated on 09/Jan/19

I=∫_0 ^∞ (x/(e^x −1))dx=∫_0 ^∞ ((xe^(−x) )/(1−e^(−x) ))dx  =∫_0 ^∞ Σ_(n=0) ^∞ xe^(−x) e^(−nx) dx  =Σ_(n=0) ^∞ ∫_0 ^∞ xe^(−(n+1)x) dx  by parts  u=x⇒u′=1  v′=e^(−(n+1)x) ⇒v=(1/(−(n+1)))e^(−(n+1)x)   I=Σ_(n=0) ^∞ (1/(n+1))∫_0 ^∞ e^(−(n+1)x) dx  =Σ_(n=0) ^∞ (1/((n+1)^2 ))  =Σ_(n=1) ^∞ (1/n^2 )=ζ(2)=(π^2 /6)  ∫_0 ^∞ (x/(e^x −1))dx=(π^2 /6)

$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{xe}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{xe}^{−{x}} {e}^{−{nx}} {dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {xe}^{−\left({n}+\mathrm{1}\right){x}} {dx} \\ $$$${by}\:{parts} \\ $$$${u}={x}\Rightarrow{u}'=\mathrm{1} \\ $$$${v}'={e}^{−\left({n}+\mathrm{1}\right){x}} \Rightarrow{v}=\frac{\mathrm{1}}{−\left({n}+\mathrm{1}\right)}{e}^{−\left({n}+\mathrm{1}\right){x}} \\ $$$${I}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\infty} {e}^{−\left({n}+\mathrm{1}\right){x}} {dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by Tawa1 last updated on 09/Jan/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com