Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 26771 by julli deswal last updated on 29/Dec/17

∫_( 0) ^(   [x]) (2^x /2^([x]) ) dx =

$$\underset{\:\mathrm{0}} {\overset{\:\:\:\left[{x}\right]} {\int}}\frac{\mathrm{2}^{{x}} }{\mathrm{2}^{\left[{x}\right]} }\:{dx}\:= \\ $$

Commented by prakash jain last updated on 29/Dec/17

∫_0 ^([x]) (2^x /2^([x]) )dx=Σ_(i=0) ^([x]−1) ∫_i ^(i+1) (2^x /2^i )dx  Σ_(i=0) ^([x]−1) (1/2^i )∫_i ^(i+1) 2^x dx  =Σ_(i=0) ^([x]−1) (1/2^i )[(2^x /(ln 2))]_i ^(i+1)   =(1/(ln 2))Σ_(i=0) ^([x]−1) (1/2^i )[2^(i+1) −2^i ]  =(1/(ln 2))Σ_(i=0) ^([x]−1) 1  =(([x])/(ln 2))  pls recheck this answer.

$$\int_{\mathrm{0}} ^{\left[{x}\right]} \frac{\mathrm{2}^{{x}} }{\mathrm{2}^{\left[{x}\right]} }{dx}=\underset{{i}=\mathrm{0}} {\overset{\left[{x}\right]−\mathrm{1}} {\sum}}\int_{{i}} ^{{i}+\mathrm{1}} \frac{\mathrm{2}^{{x}} }{\mathrm{2}^{{i}} }{dx} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\left[{x}\right]−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{i}} }\int_{{i}} ^{{i}+\mathrm{1}} \mathrm{2}^{{x}} {dx} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\left[{x}\right]−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{i}} }\left[\frac{\mathrm{2}^{{x}} }{\mathrm{ln}\:\mathrm{2}}\right]_{{i}} ^{{i}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}\underset{{i}=\mathrm{0}} {\overset{\left[{x}\right]−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{i}} }\left[\mathrm{2}^{{i}+\mathrm{1}} −\mathrm{2}^{{i}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}\underset{{i}=\mathrm{0}} {\overset{\left[{x}\right]−\mathrm{1}} {\sum}}\mathrm{1} \\ $$$$=\frac{\left[{x}\right]}{\mathrm{ln}\:\mathrm{2}} \\ $$$$\mathrm{pls}\:\mathrm{recheck}\:\mathrm{this}\:\mathrm{answer}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com