Question Number 210354 by klipto last updated on 08/Aug/24 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\boldsymbol{\alpha}} \frac{\boldsymbol{\mathrm{x}}}{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\left(\mathrm{1}+\boldsymbol{\alpha\mathrm{x}}\right)}\boldsymbol{\mathrm{dx}} \\ $$ | ||
Answered by klipto last updated on 08/Aug/24 | ||
![]() | ||
$$ \\ $$ | ||
Answered by Frix last updated on 08/Aug/24 | ||
![]() | ||
$$\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\alpha{x}+\mathrm{1}\right)}{dx}= \\ $$$$=\frac{\mathrm{1}}{\alpha^{\mathrm{2}} +\mathrm{1}}\int\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}+\frac{\alpha}{\alpha^{\mathrm{2}} +\mathrm{1}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{1}}−\frac{\alpha}{\alpha^{\mathrm{2}} +\mathrm{1}}\int\frac{{dx}}{\alpha{x}+\mathrm{1}}= \\ $$$$=\frac{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{2}\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\alpha\mathrm{tan}^{−\mathrm{1}} \:{x}}{\alpha^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{ln}\:\mid\alpha{x}+\mathrm{1}\mid}{\alpha^{\mathrm{2}} +\mathrm{1}}+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\alpha} {\int}}\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\alpha{x}+\mathrm{1}\right)}{dx}= \\ $$$$=\frac{\alpha\mathrm{tan}^{−\mathrm{1}} \:\alpha}{\alpha^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{ln}\:\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{2}\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)} \\ $$ | ||