Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156860 by amin96 last updated on 16/Oct/21

∫_0 ^∞ ((x)^(1/n) /(x^3 +x^2 +x+1))dx=?

$$\int_{\mathrm{0}} ^{\infty} \frac{\sqrt[{{n}}]{{x}}}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}=? \\ $$

Answered by mindispower last updated on 16/Oct/21

f(a)=∫_0 ^∞ ((x^a dx)/(1+x+..+x^m )),a∈[0,m−1[,m∈N−{0,1}  f(a)=∫_0 ^1 (x^a /(1+x..+x^m ))dx+∫_0 ^1 ((x^(−a) x^(m−2) )/((1+x..+x^m )))dx  =∫_0 ^1 ((x^a (1−x))/(1−x^(m+1) ))+((x^(m−(a+2)) (1−x))/(1−x^(m+1) ))dx  x^(m+1) =t  =∫_0 ^1 ((t^(a/(m+1)) (1−t^(1/(m+1)) ))/(1−t)).t^(−(m/(m+1))) (dt/(m+1))+(1/(m+1))∫_0 ^1 ((t^((m−(a+2))/(m+1)) (1−t^(1/(m+1)) ))/(1−t))t^(−(m/(m+1))) dt  =(1/(m+1))∫_0 ^1 ((t^((a−m)/(m+1)) −t^((1+a−m)/(m+1)) )/(1−t))dt+(1/(m+1))∫_0 ^1 ((t^(−((a+2)/(m+1))) −t^((1−(a+2))/(m+1)) )/(1−t))dt  recall  Ψ(1+s)=−γ+∫_0 ^1 ((1−x^s )/(1−x))dx  we get  =(1/(m+1))(Ψ(((1+a−m)/(m+1))+1)−Ψ(((a−m)/(m+1))+1)+Ψ(((1−a−2)/(m+1))+1)−Ψ(((−a−2)/(m+1))+1))  put a=(1/n),m=3

$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{a}} {dx}}{\mathrm{1}+{x}+..+{x}^{{m}} },{a}\in\left[\mathrm{0},{m}−\mathrm{1}\left[,{m}\in\mathbb{N}−\left\{\mathrm{0},\mathrm{1}\right\}\right.\right. \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} }{\mathrm{1}+{x}..+{x}^{{m}} }{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{−{a}} {x}^{{m}−\mathrm{2}} }{\left(\mathrm{1}+{x}..+{x}^{{m}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} \left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}^{{m}+\mathrm{1}} }+\frac{{x}^{{m}−\left({a}+\mathrm{2}\right)} \left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}^{{m}+\mathrm{1}} }{dx} \\ $$$${x}^{{m}+\mathrm{1}} ={t} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{a}}{{m}+\mathrm{1}}} \left(\mathrm{1}−{t}^{\frac{\mathrm{1}}{{m}+\mathrm{1}}} \right)}{\mathrm{1}−{t}}.{t}^{−\frac{{m}}{{m}+\mathrm{1}}} \frac{{dt}}{{m}+\mathrm{1}}+\frac{\mathrm{1}}{{m}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{m}−\left({a}+\mathrm{2}\right)}{{m}+\mathrm{1}}} \left(\mathrm{1}−{t}^{\frac{\mathrm{1}}{{m}+\mathrm{1}}} \right)}{\mathrm{1}−{t}}{t}^{−\frac{{m}}{{m}+\mathrm{1}}} {dt} \\ $$$$=\frac{\mathrm{1}}{{m}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{a}−{m}}{{m}+\mathrm{1}}} −{t}^{\frac{\mathrm{1}+{a}−{m}}{{m}+\mathrm{1}}} }{\mathrm{1}−{t}}{dt}+\frac{\mathrm{1}}{{m}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{−\frac{{a}+\mathrm{2}}{{m}+\mathrm{1}}} −{t}^{\frac{\mathrm{1}−\left({a}+\mathrm{2}\right)}{{m}+\mathrm{1}}} }{\mathrm{1}−{t}}{dt} \\ $$$${recall} \\ $$$$\Psi\left(\mathrm{1}+{s}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{s}} }{\mathrm{1}−{x}}{dx} \\ $$$${we}\:{get} \\ $$$$=\frac{\mathrm{1}}{{m}+\mathrm{1}}\left(\Psi\left(\frac{\mathrm{1}+{a}−{m}}{{m}+\mathrm{1}}+\mathrm{1}\right)−\Psi\left(\frac{{a}−{m}}{{m}+\mathrm{1}}+\mathrm{1}\right)+\Psi\left(\frac{\mathrm{1}−{a}−\mathrm{2}}{{m}+\mathrm{1}}+\mathrm{1}\right)−\Psi\left(\frac{−{a}−\mathrm{2}}{{m}+\mathrm{1}}+\mathrm{1}\right)\right) \\ $$$${put}\:{a}=\frac{\mathrm{1}}{{n}},{m}=\mathrm{3} \\ $$

Commented by mnjuly1970 last updated on 16/Oct/21

grateful  sir power...

$${grateful}\:\:{sir}\:{power}... \\ $$

Commented by amin96 last updated on 16/Oct/21

bravoo sir its trueee))

$$\left.{b}\left.{ravoo}\:{sir}\:{its}\:{trueee}\right)\right) \\ $$

Commented by mindispower last updated on 18/Oct/21

thank you sir withe pleasur

$${thank}\:{you}\:{sir}\:{withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com