Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35949 by ajfour last updated on 26/May/18

∫_0 ^(  α) ((tan θ)/(√(a^2 cos^2 θ−b^2 sin^2 θ))) dθ = ?

$$\int_{\mathrm{0}} ^{\:\:\alpha} \frac{\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta−{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}}\:{d}\theta\:=\:? \\ $$

Commented by abdo mathsup 649 cc last updated on 26/May/18

let put I_α  = ∫_0 ^α    ((tanθ)/(√(a^2 cos^2 θ−b^2 sin^2 θ)))dθ   we hsve the formula  1+tan^2 θ =(1/(cos^2 θ)) ⇒  cos^2 θ = (1/(1+tan^2 θ))  and  sin^2 θ =1−(1/(1+tan^2 θ)) ⇒  a^2 cos^2 θ −b^2 sin^2 θ  = (a^2 /(1+tan^2 θ)) −b^2   ((tan^2 θ)/(1+tan^2 θ)) = ((a^2  −b^2  tan^2 θ)/(1+tan^2 θ)) ⇒  I_α  = ∫_0 ^α  ((tanθ(√(1+tan^2 θ)))/(√(a^2  −b^2 tan^2 θ))) dθ  changement tanθ =t  give I_α  =  ∫_0 ^(tanα)     ((t(√(1+t^2 )))/(√(a^2  −b^2 t^2 ))) (dt/(1+t^2 ))  = ∫_0 ^(tan(α))     (t/(√(1+t^2 )))   (dt/(√(a^2  −b^2 t^2 )))  by parts  u^′  = (t/(√(1+t^2 ))) and  v = (1/(√(a^2  −b^2 t^2 )))    I_α   = [ ((√(1+t^2 ))/(√(a^2  −b^2 t^2 )))]_0 ^(tan(α)) −∫_0 ^(tan(α))  (√(1+t^2 )) (−(1/2)−2b^2 t)(a^2  −b^2 t^2 )^(−(3/2)) dt  =((√(1+tan^2 α))/(√(a^2  −b^2  tan^2 α))) − (1/(∣a∣))  −b^2  ∫_0 ^(tan(α))  (√(1+t^2 ))( a^2  −b^2 t^2 )^(−(3/2)) dt  let J = ∫_0 ^(tan(α))  (√(1+t^2 )) (a^2  −b^2 t^2 )^(−(3/2)) dt  =c ∫_0 ^(tan(α))     ((√(1+t^2 ))/((a^2   −b^2 t^2 )(√(a^2  −b^2 t^2 ))))dt  ...be continued ...

$${let}\:{put}\:{I}_{\alpha} \:=\:\int_{\mathrm{0}} ^{\alpha} \:\:\:\frac{{tan}\theta}{\sqrt{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta−{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}}{d}\theta\: \\ $$$${we}\:{hsve}\:{the}\:{formula}\:\:\mathrm{1}+{tan}^{\mathrm{2}} \theta\:=\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\:\Rightarrow \\ $$$${cos}^{\mathrm{2}} \theta\:=\:\frac{\mathrm{1}}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:\:{and}\:\:{sin}^{\mathrm{2}} \theta\:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:\Rightarrow \\ $$$${a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\:−{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta \\ $$$$=\:\frac{{a}^{\mathrm{2}} }{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:−{b}^{\mathrm{2}} \:\:\frac{{tan}^{\mathrm{2}} \theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\:\frac{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} \:{tan}^{\mathrm{2}} \theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:\Rightarrow \\ $$$${I}_{\alpha} \:=\:\int_{\mathrm{0}} ^{\alpha} \:\frac{{tan}\theta\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}}{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta}}\:{d}\theta\:\:{changement}\:{tan}\theta\:={t} \\ $$$${give}\:{I}_{\alpha} \:=\:\:\int_{\mathrm{0}} ^{{tan}\alpha} \:\:\:\:\frac{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} }}\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{{tan}\left(\alpha\right)} \:\:\:\:\frac{{t}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:\:\frac{{dt}}{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} }}\:\:{by}\:{parts} \\ $$$${u}^{'} \:=\:\frac{{t}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:{and}\:\:{v}\:=\:\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} }}\:\: \\ $$$${I}_{\alpha} \:\:=\:\left[\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} }}\right]_{\mathrm{0}} ^{{tan}\left(\alpha\right)} −\int_{\mathrm{0}} ^{{tan}\left(\alpha\right)} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\left(−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{b}^{\mathrm{2}} {t}\right)\left({a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} {dt} \\ $$$$=\frac{\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \alpha}}{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} \:{tan}^{\mathrm{2}} \alpha}}\:−\:\frac{\mathrm{1}}{\mid{a}\mid}\:\:−{b}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{{tan}\left(\alpha\right)} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\left(\:{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} {dt} \\ $$$${let}\:{J}\:=\:\int_{\mathrm{0}} ^{{tan}\left(\alpha\right)} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\left({a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} {dt} \\ $$$$={c}\:\int_{\mathrm{0}} ^{{tan}\left(\alpha\right)} \:\:\:\:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{\left({a}^{\mathrm{2}} \:\:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} \right)\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} {t}^{\mathrm{2}} }}{dt}\:\:...{be}\:{continued}\:... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18

∫_0 ^α ((tanθ.secθ)/(√(a^2 −b^2 tan^2 θ)))dθ  ∫_0 ^α ((tanθsecθ)/(√(a^2 −b^2 sec^2 θ+b^2 )))dθ  (1/b)∫((d(secθ))/(√(((a^2 +b^2 )/b^2 )−sec^2 θ)))  now use formula ∫(dx/(√(A^2 −X^2 )))  (1/b)×∣sin^(−1) (((secθ)/(√((a^2 +b^2 )/b^2 ))))∣_0 ^α   (1/b)×{sin^(−1) (((secα)/(√((a^2 +b^2 )/b^2 ))))−sin^(−1) ((1/((√(a^2 +b^2 ))/b^2 )))}

$$\int_{\mathrm{0}} ^{\alpha} \frac{{tan}\theta.{sec}\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta}}{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\alpha} \frac{{tan}\theta{sec}\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} {sec}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} }}{d}\theta \\ $$$$\frac{\mathrm{1}}{{b}}\int\frac{{d}\left({sec}\theta\right)}{\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−{sec}^{\mathrm{2}} \theta}} \\ $$$${now}\:{use}\:{formula}\:\int\frac{{dx}}{\sqrt{{A}^{\mathrm{2}} −{X}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{1}}{{b}}×\mid{sin}^{−\mathrm{1}} \left(\frac{{sec}\theta}{\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}}\right)\mid_{\mathrm{0}} ^{\alpha} \\ $$$$\frac{\mathrm{1}}{{b}}×\left\{{sin}^{−\mathrm{1}} \left(\frac{{sec}\alpha}{\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}}\right)−{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} }}\right)\right\} \\ $$

Commented by ajfour last updated on 26/May/18

Thanks.

$${Thanks}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 26/May/18

its ok...

$${its}\:{ok}... \\ $$

Commented by ajfour last updated on 26/May/18

i applied your technique again  and corrected my answer to  Q.35940 . Thanks again.

$${i}\:{applied}\:{your}\:{technique}\:{again} \\ $$$${and}\:{corrected}\:{my}\:{answer}\:{to} \\ $$$${Q}.\mathrm{35940}\:.\:{Thanks}\:{again}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com