Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146090 by Ar Brandon last updated on 10/Jul/21

∫_0 ^∞ ((sinh(at)sinh(bt))/(sinh(ct)e^(tz) ))dt=  ((ab)/(c(z^2 +c^2 −a^2 −b^2 +K_(k=1) ^∞ ((−4k^2 (k^2 c^2 −a^2 )(k^2 c^2 −b^2 ))/((2k+1)(z^2 +(2k^2 +2k+1)c^2 −a^2 −b^2 ))))))

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinh}\left(\mathrm{at}\right)\mathrm{sinh}\left(\mathrm{bt}\right)}{\mathrm{sinh}\left(\mathrm{ct}\right)\mathrm{e}^{\mathrm{tz}} }\mathrm{dt}= \\ $$$$\frac{\mathrm{ab}}{\mathrm{c}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\mathrm{K}}}\frac{−\mathrm{4k}^{\mathrm{2}} \left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}{\left(\mathrm{2k}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} +\left(\mathrm{2k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{1}\right)\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}\right)} \\ $$

Answered by mindispower last updated on 10/Jul/21

z is x ?

$${z}\:{is}\:{x}\:? \\ $$

Commented by Ar Brandon last updated on 10/Jul/21

Thanks for the remark. I appologize for that.  It was a mistake, it′s been edited.

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{remark}.\:\mathrm{I}\:\mathrm{appologize}\:\mathrm{for}\:\mathrm{that}. \\ $$$$\mathrm{It}\:\mathrm{was}\:\mathrm{a}\:\mathrm{mistake},\:\mathrm{it}'\mathrm{s}\:\mathrm{been}\:\mathrm{edited}. \\ $$

Answered by mindispower last updated on 14/Jul/21

tchek it sir

$${tchek}\:{it}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com