Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151449 by mathdanisur last updated on 21/Aug/21

Ω =∫_( 0) ^( ∞)  sin(x^2 ) dx = ?

$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx}\:=\:? \\ $$

Answered by puissant last updated on 21/Aug/21

f(u)=e^(−u^2 )   ⇒ ∮f(u)du=∫_0 ^a e^(−t^2 ) dt+∫_0 ^(π/4) iae^(it) e^(−a^2 exp(2it)) dt−∫_0 ^a e^(i(π/4)) e^(−it^2 ) dt  I_1 =∫_0 ^a e^(−t^2 ) dt  I_2 =∫_0 ^(π/4) iae^(it) e^(−a^2 exp(2it)) dt  I_3 =∫_0 ^a e^(i(π/4)) e^(−it^2 ) dt  ∣I_2 (a)∣≤∫_0 ^(π/4) ae^(−a^2 cos(2t)) dt=∫_0 ^(π/2) (a/2)e^(−a^2 cosz) dz  ∀u∈[0;(π/2)], 1−((2z)/π)≤cosz≤1  ⇒ ∀u∈[0;(π/2)], e^(−a^2 cosz) ≤e^(a^2 (((2z)/π)−1))   ⇒ ∫_0 ^(π/2) (a/2)e^(−a^2 cosz) dz≤(π/(4a))(1−e^(−a^2 ) )  lim_(a→∞) I_2 (a)=0 (gendarme theoreme)  I_1 (a)=((√π)/2) (Gauss integrale)  lim_(a→∞) I_3 (a)=∫_0 ^∞ e^(i(π/4)) e^(−it^2 ) dt = ((1+i)/( (√2)))∫_0 ^∞ e^(−it^2 ) dt  f parcout une distance ferme,  ⇒ ∮f(u)du=0  ⇒ ((1+i)/( (√2)))∫_0 ^∞ e^(−it^2 ) dt=((√π)/2)  ⇒ ∫_0 ^∞ e^(−it^2 ) dt=(((1−i)/2))(√(π/2))  Q=∫_0 ^∞ sin(x^2 )dx=Im(∫_0 ^∞ e^(−it^2 ) dt)=(√(π/8))..■  Remarque: ∫_0 ^∞ sin(x^2 )dx=∫_0 ^∞ cos(x^2 )dx=(√(π/8))..★  appele Integrale de FRESNEL..                             ..............Le puissant..............

$${f}\left({u}\right)={e}^{−{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\oint{f}\left({u}\right){du}=\int_{\mathrm{0}} ^{{a}} {e}^{−{t}^{\mathrm{2}} } {dt}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {iae}^{{it}} {e}^{−{a}^{\mathrm{2}} {exp}\left(\mathrm{2}{it}\right)} {dt}−\int_{\mathrm{0}} ^{{a}} {e}^{{i}\frac{\pi}{\mathrm{4}}} {e}^{−{it}^{\mathrm{2}} } {dt} \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{{a}} {e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$${I}_{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {iae}^{{it}} {e}^{−{a}^{\mathrm{2}} {exp}\left(\mathrm{2}{it}\right)} {dt} \\ $$$${I}_{\mathrm{3}} =\int_{\mathrm{0}} ^{{a}} {e}^{{i}\frac{\pi}{\mathrm{4}}} {e}^{−{it}^{\mathrm{2}} } {dt} \\ $$$$\mid{I}_{\mathrm{2}} \left({a}\right)\mid\leqslant\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ae}^{−{a}^{\mathrm{2}} {cos}\left(\mathrm{2}{t}\right)} {dt}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{a}}{\mathrm{2}}{e}^{−{a}^{\mathrm{2}} {cosz}} {dz} \\ $$$$\forall{u}\in\left[\mathrm{0};\frac{\pi}{\mathrm{2}}\right],\:\mathrm{1}−\frac{\mathrm{2}{z}}{\pi}\leqslant{cosz}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:\forall{u}\in\left[\mathrm{0};\frac{\pi}{\mathrm{2}}\right],\:{e}^{−{a}^{\mathrm{2}} {cosz}} \leqslant{e}^{{a}^{\mathrm{2}} \left(\frac{\mathrm{2}{z}}{\pi}−\mathrm{1}\right)} \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{a}}{\mathrm{2}}{e}^{−{a}^{\mathrm{2}} {cosz}} {dz}\leqslant\frac{\pi}{\mathrm{4}{a}}\left(\mathrm{1}−{e}^{−{a}^{\mathrm{2}} } \right) \\ $$$${lim}_{{a}\rightarrow\infty} {I}_{\mathrm{2}} \left({a}\right)=\mathrm{0}\:\left({gendarme}\:{theoreme}\right) \\ $$$${I}_{\mathrm{1}} \left({a}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}\:\left({Gauss}\:{integrale}\right) \\ $$$${lim}_{{a}\rightarrow\infty} {I}_{\mathrm{3}} \left({a}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{{i}\frac{\pi}{\mathrm{4}}} {e}^{−{it}^{\mathrm{2}} } {dt}\:=\:\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\infty} {e}^{−{it}^{\mathrm{2}} } {dt} \\ $$$${f}\:{parcout}\:{une}\:{distance}\:{ferme}, \\ $$$$\Rightarrow\:\oint{f}\left({u}\right){du}=\mathrm{0} \\ $$$$\Rightarrow\:\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\infty} {e}^{−{it}^{\mathrm{2}} } {dt}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\infty} {e}^{−{it}^{\mathrm{2}} } {dt}=\left(\frac{\mathrm{1}−{i}}{\mathrm{2}}\right)\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$${Q}=\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}={Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{it}^{\mathrm{2}} } {dt}\right)=\sqrt{\frac{\pi}{\mathrm{8}}}..\blacksquare \\ $$$${Remarque}:\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}=\sqrt{\frac{\pi}{\mathrm{8}}}..\bigstar \\ $$$${appele}\:{Integrale}\:{de}\:{FRESNEL}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..............\mathscr{L}{e}\:{puissant}.............. \\ $$

Commented by mathdanisur last updated on 21/Aug/21

Thank yoy Ser, ans (√(π/8)) or (√(π/8)) i.?

$$\mathrm{Thank}\:\mathrm{yoy}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{ans}\:\sqrt{\pi/\mathrm{8}}\:\mathrm{or}\:\sqrt{\pi/\mathrm{8}}\:{i}.? \\ $$

Commented by puissant last updated on 21/Aug/21

(√(π/8))  because e^(ix) =cosx+isinx  Re(e^(ix) )=cosx  and im(e^(ix) )=sinx

$$\sqrt{\frac{\pi}{\mathrm{8}}}\:\:{because}\:{e}^{{ix}} ={cosx}+{isinx} \\ $$$${Re}\left({e}^{{ix}} \right)={cosx}\:\:{and}\:{im}\left({e}^{{ix}} \right)={sinx} \\ $$

Answered by Ar Brandon last updated on 26/Aug/21

Ω=∫_0 ^∞ sin(x^2 )dx, u=x^2       =(1/2)∫_0 ^∞ u^(−(1/2)) sin(u)du      =(1/2)∙(π/(2Γ((1/2))sin((π/4))))      =(π/( 2(√(2π))))=(√(π/8))

$$\Omega=\int_{\mathrm{0}} ^{\infty} \mathrm{sin}\left({x}^{\mathrm{2}} \right){dx},\:{u}={x}^{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {u}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{sin}\left({u}\right){du} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\pi}{\mathrm{2}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\:\:\:\:=\frac{\pi}{\:\mathrm{2}\sqrt{\mathrm{2}\pi}}=\sqrt{\frac{\pi}{\mathrm{8}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com