Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 5321 by qw last updated on 07/May/16

 ∫_( 0) ^(sin^2 x)  sin^(−1) (√t) dt +∫_( 0) ^(cos^2 x) cos^(−1) (√t) dt =

$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{sin}^{\mathrm{2}} {x}} {\int}}\:\mathrm{sin}^{−\mathrm{1}} \sqrt{{t}}\:{dt}\:+\underset{\:\mathrm{0}} {\overset{\mathrm{cos}^{\mathrm{2}} {x}} {\int}}\mathrm{cos}^{−\mathrm{1}} \sqrt{{t}}\:{dt}\:= \\ $$

Commented by Yozzii last updated on 08/May/16

I=∫_0 ^(sin^2 x) sin^(−1) (√t) dt+∫_0 ^(cos^2 x) cos^(−1) (√t) dt  I=−(1/2)cos2xsin^(−1) ∣sinx∣+((1+cos2x)/2)cos^(−1) ∣cosx∣+(1/2)sin^(−1) ∣sin((π/2)−x)∣  For 0<x<(π/2),  I=∫_0 ^(sin^2 x) sin^(−1) (√t) dt+∫_0 ^(cos^2 x) cos^(−1) (√t) dt=(π/4).

$${I}=\int_{\mathrm{0}} ^{{sin}^{\mathrm{2}} {x}} {sin}^{−\mathrm{1}} \sqrt{{t}}\:{dt}+\int_{\mathrm{0}} ^{{cos}^{\mathrm{2}} {x}} {cos}^{−\mathrm{1}} \sqrt{{t}}\:{dt} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}}{cos}\mathrm{2}{xsin}^{−\mathrm{1}} \mid{sinx}\mid+\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}{cos}^{−\mathrm{1}} \mid{cosx}\mid+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \mid{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\mid \\ $$$${For}\:\mathrm{0}<{x}<\frac{\pi}{\mathrm{2}}, \\ $$$${I}=\int_{\mathrm{0}} ^{{sin}^{\mathrm{2}} {x}} {sin}^{−\mathrm{1}} \sqrt{{t}}\:{dt}+\int_{\mathrm{0}} ^{{cos}^{\mathrm{2}} {x}} {cos}^{−\mathrm{1}} \sqrt{{t}}\:{dt}=\frac{\pi}{\mathrm{4}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com