Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133563 by bemath last updated on 23/Feb/21

 ∫_0 ^∞  [sin (1/x)−(1/π)sin ((π/x))] dx

$$\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\left[\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{1}}{\pi}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{x}}\right)\right]\:\mathrm{dx} \\ $$

Answered by EDWIN88 last updated on 23/Feb/21

 Calculate ∫_0 ^∞ (sin( (1/x))−(1/π) sin ((π/x) ) )dx  let (1/x) = t∧ x= (1/t) ;  determinant (((x→∞),(t→0^+ )),((x→0^+ ),(t→∞)))  I=∫_∞ ^0 (sin t−(1/π)sin πt)(−(1/t^2 ))dt   I=∫_0 ^∞ (((((sin t)/t)− ((sin πt)/(πt)))/t) ) dt ; Frullani integral  I=[ lim_(t→∞)  (((sin t)/t))−lim_(t→0)  ((sin πt)/(πt)) ].ln ((b/a)) ;  { ((b=1)),((a=π)) :}  I=(0−1)ln ((1/π))=ln π

$$\:\mathrm{Calculate}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\mathrm{sin}\left(\:\frac{\mathrm{1}}{\mathrm{x}}\right)−\frac{\mathrm{1}}{\pi}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{x}}\:\right)\:\right)\mathrm{dx} \\ $$$$\mathrm{let}\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\mathrm{t}\wedge\:\mathrm{x}=\:\frac{\mathrm{1}}{\mathrm{t}}\:;\:\begin{array}{|c|c|}{\mathrm{x}\rightarrow\infty}&\hline{\mathrm{t}\rightarrow\mathrm{0}^{+} }\\{\mathrm{x}\rightarrow\mathrm{0}^{+} }&\hline{\mathrm{t}\rightarrow\infty}\\\hline\end{array} \\ $$$$\mathrm{I}=\underset{\infty} {\overset{\mathrm{0}} {\int}}\left(\mathrm{sin}\:\mathrm{t}−\frac{\mathrm{1}}{\pi}\mathrm{sin}\:\pi\mathrm{t}\right)\left(−\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)\mathrm{dt}\: \\ $$$$\mathrm{I}=\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\frac{\mathrm{sin}\:\mathrm{t}}{\mathrm{t}}−\:\frac{\mathrm{sin}\:\pi\mathrm{t}}{\pi\mathrm{t}}}{\mathrm{t}}\:\right)\:\mathrm{dt}\:;\:\mathrm{Frullani}\:\mathrm{integral} \\ $$$$\mathrm{I}=\left[\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:\mathrm{t}}{\mathrm{t}}\right)−\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\pi\mathrm{t}}{\pi\mathrm{t}}\:\right].\mathrm{ln}\:\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\:;\:\begin{cases}{\mathrm{b}=\mathrm{1}}\\{\mathrm{a}=\pi}\end{cases} \\ $$$$\mathrm{I}=\left(\mathrm{0}−\mathrm{1}\right)\mathrm{ln}\:\left(\frac{\mathrm{1}}{\pi}\right)=\mathrm{ln}\:\pi\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com