Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215496 by MATHEMATICSAM last updated on 08/Jan/25

∫_0 ^π ((xtanx)/(secx + tanx)) dx  Solve the integral.

$$\int_{\mathrm{0}} ^{\pi} \frac{{x}\mathrm{tan}{x}}{\mathrm{sec}{x}\:+\:\mathrm{tan}{x}}\:{dx} \\ $$$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integral}. \\ $$

Commented by mr W last updated on 09/Jan/25

=(π^2 /2)−π

$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\pi \\ $$

Answered by Frix last updated on 10/Jan/25

∫((xtan x)/(sec x +tan x))dx=∫((xsin x)/(1+sin x))dx =^([by parts])    =((x(1+xcos x −sin x))/(cos x))−∫(x+(1/(cos x))−tan x)dx  Should be easy from here...

$$\int\frac{{x}\mathrm{tan}\:{x}}{\mathrm{sec}\:{x}\:+\mathrm{tan}\:{x}}{dx}=\int\frac{{x}\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}{dx}\:\overset{\left[\mathrm{by}\:\mathrm{parts}\right]} {=}\: \\ $$$$=\frac{{x}\left(\mathrm{1}+{x}\mathrm{cos}\:{x}\:−\mathrm{sin}\:{x}\right)}{\mathrm{cos}\:{x}}−\int\left({x}+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}−\mathrm{tan}\:{x}\right){dx} \\ $$$$\mathrm{Should}\:\mathrm{be}\:\mathrm{easy}\:\mathrm{from}\:\mathrm{here}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com