Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113738 by bemath last updated on 15/Sep/20

 ∫_0 ^π  ((x sin x)/(1+cos^2 x)) dx ?

$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$

Answered by bobhans last updated on 15/Sep/20

I = ∫_0 ^π  ((x sin x)/(1+cos^2 x)) dx   replace x by π−x →I=∫_π ^0  (((π−x)sin (π−x))/(1+cos^2 (π−x))) (−dx)  I= ∫_0 ^π  (((π−x)sin x)/(1+cos^2 x)) dx = ∫_0 ^π  ((πsin x)/(1+cos^2 x)) dx−∫_0 ^π  ((xsin x)/(1+cos^2 x)) dx  2I = ∫_0 ^π  ((π sin x)/(1+cos^2 x)) dx   consider ∫ ((π sin x)/(1+cos x))dx = −π∫ ((d(cos x))/(1+cos^2 x))                                                     = −π∫ (du/(1+u^2 ))                                                     = −π tan^(−1) (cos x) + c        now we have 2I = −π [ tan^(−1) (cos x) ]_0 ^π   I = −(π/2)[−(π/4)−(π/4) ]= (π^2 /4).

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\: \\ $$$$\mathrm{replace}\:\mathrm{x}\:\mathrm{by}\:\pi−\mathrm{x}\:\rightarrow\mathrm{I}=\underset{\pi} {\overset{\mathrm{0}} {\int}}\:\frac{\left(\pi−\mathrm{x}\right)\mathrm{sin}\:\left(\pi−\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)}\:\left(−\mathrm{dx}\right) \\ $$$$\mathrm{I}=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\left(\pi−\mathrm{x}\right)\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\pi\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}−\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{xsin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx} \\ $$$$\mathrm{2I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\pi\:\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\: \\ $$$$\mathrm{consider}\:\int\:\frac{\pi\:\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\mathrm{dx}\:=\:−\pi\int\:\frac{\mathrm{d}\left(\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\pi\int\:\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\pi\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{x}\right)\:+\:\mathrm{c}\:\:\:\:\:\: \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have}\:\mathrm{2I}\:=\:−\pi\:\left[\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{x}\right)\:\right]_{\mathrm{0}} ^{\pi} \\ $$$$\mathrm{I}\:=\:−\frac{\pi}{\mathrm{2}}\left[−\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4}}\:\right]=\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com