Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 105706 by bramlex last updated on 31/Jul/20

∫_0 ^π  (dx/(((√5)−cos x)^3 )) ?

π0dx(5cosx)3?

Answered by john santu last updated on 31/Jul/20

F(a) = ∫_0 ^π  (dx/(a−cos x)) = (π/(√(a^2 −1)))  F ′(a) = ∫ (∂/∂a)[(dx/(a−cos x)) ] = (∂/∂a) [(π/(√(a^2 −1)))]  −∫_0 ^π  ((dx/((a−cos x)^2 )))=−πa^2 (a^2 −1)^(−3/2)   F ′′(a)= ∫_0 ^π  (∂/∂a)[(dx/((a−cos x)^2 ))]=−π[(a^2 −1)^(−3/2) −3a^2 (a^2 −1)^(−5/2) ]  ∫_0 ^π  (dx/((1−cos x)^3 )) = −(π/2)(a^2 −1)^(−5/2) ((a^2 −1)−3a^2 )                                = (π/2). ((2a^2 +1)/((a^2 −1)^(5/2) ))  put a = (√5)  ∫_0 ^π  (dx/(((√5)−cos x)^3 )) = ((11π)/(64)) . ★

F(a)=π0dxacosx=πa21F(a)=a[dxacosx]=a[πa21]π0(dx(acosx)2)=πa2(a21)3/2F(a)=π0a[dx(acosx)2]=π[(a21)3/23a2(a21)5/2]π0dx(1cosx)3=π2(a21)5/2((a21)3a2)=π2.2a2+1(a21)5/2puta=5π0dx(5cosx)3=11π64.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com