Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118891 by cantor last updated on 20/Oct/20

 ∫_0 ^π arctan(3^(cosx) )dx=???    please help

$$\:\int_{\mathrm{0}} ^{\pi} \boldsymbol{{arctan}}\left(\mathrm{3}^{\boldsymbol{{cosx}}} \right)\boldsymbol{{dx}}=??? \\ $$$$ \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{help}} \\ $$

Answered by Dwaipayan Shikari last updated on 20/Oct/20

∫_0 ^π tan^(−1) (3^(cosx) )dx=∫_0 ^π tan^(−1) (3^(−cosx) )dx=I      (Using ∫_0 ^π f(x)dx=∫_0 ^π f(π−x)dx  2I=∫_0 ^π tan^(−1) (((3^(cosx) +3^(−cosx) )/(1−3^(cosx−cosx) )))dx  2I=∫_0 ^π tan^(−1) (((3^(cosx) +3^(−cosx) )/z))dx            z→0  tan^(−1) (((3^(cosx) +3^(−cosx) )/z))=(π/2)  2I=∫_0 ^π (π/2)dx           I=(π^2 /4)

$$\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left(\mathrm{3}^{{cosx}} \right){dx}=\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left(\mathrm{3}^{−{cosx}} \right){dx}={I}\:\:\:\:\:\:\left({Using}\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\pi} {f}\left(\pi−{x}\right){dx}\right. \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}^{{cosx}} +\mathrm{3}^{−{cosx}} }{\mathrm{1}−\mathrm{3}^{{cosx}−{cosx}} }\right){dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}^{{cosx}} +\mathrm{3}^{−{cosx}} }{{z}}\right){dx}\:\:\:\:\:\:\:\:\:\:\:\:{z}\rightarrow\mathrm{0}\:\:{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}^{{cosx}} +\mathrm{3}^{−{cosx}} }{{z}}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{2}}{dx}\:\:\:\:\:\:\:\:\: \\ $$$${I}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 20/Oct/20

let me explain.  note:: tan^(−1) (x)+tan^(−1) (y)=tan^(−1) (((x+y)/(1−xy)))  I=∫_(0 ) ^( π) tan^(−1) (3^(cos(x)) )dx.....(1)  I   =^([∫_a ^( b) f(x)dx=∫_a ^( b) f(a+b−x)dx]) ∫_0 ^( π) tan^(−1) (3^(−cos(x)) )...(2)  ∴(1)+(2)::   2I=^(note) ∫_0 ^(  π) tan^(−1) (((3^(cos(x)) +3^(−cos(x)) )/([1−3^(cos(x)) .3^(−cos(x)) ]=0)))           =∫_0 ^( π) [tan^(−1) (∞)=(π/2)]dx=(π^2 /2)  ∴  I=(π^2 /4)    ✓✓             ... m.n.1970...

$${let}\:{me}\:{explain}. \\ $$$${note}::\:{tan}^{−\mathrm{1}} \left({x}\right)+{tan}^{−\mathrm{1}} \left({y}\right)={tan}^{−\mathrm{1}} \left(\frac{{x}+{y}}{\mathrm{1}−{xy}}\right) \\ $$$${I}=\int_{\mathrm{0}\:} ^{\:\pi} {tan}^{−\mathrm{1}} \left(\mathrm{3}^{{cos}\left({x}\right)} \right){dx}.....\left(\mathrm{1}\right) \\ $$$${I}\:\:\:\overset{\left[\int_{{a}} ^{\:{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{\:{b}} {f}\left({a}+{b}−{x}\right){dx}\right]} {=}\int_{\mathrm{0}} ^{\:\pi} {tan}^{−\mathrm{1}} \left(\mathrm{3}^{−{cos}\left({x}\right)} \right)...\left(\mathrm{2}\right) \\ $$$$\therefore\left(\mathrm{1}\right)+\left(\mathrm{2}\right)::\: \\ $$$$\mathrm{2}{I}\overset{{note}} {=}\int_{\mathrm{0}} ^{\:\:\pi} {tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}^{{cos}\left({x}\right)} +\mathrm{3}^{−{cos}\left({x}\right)} }{\left[\mathrm{1}−\mathrm{3}^{{cos}\left({x}\right)} .\mathrm{3}^{−{cos}\left({x}\right)} \right]=\mathrm{0}}\right) \\ $$$$\:\:\:\:\:\:\: \\ $$$$=\int_{\mathrm{0}} ^{\:\pi} \left[{tan}^{−\mathrm{1}} \left(\infty\right)=\frac{\pi}{\mathrm{2}}\right]{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\therefore\:\:{I}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:\:\:\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:...\:{m}.{n}.\mathrm{1970}... \\ $$

Commented by cantor last updated on 20/Oct/20

please i don′t understand  the 1^(st)  line please explaint

$$\boldsymbol{{please}}\:\boldsymbol{{i}}\:\boldsymbol{{don}}'\boldsymbol{{t}}\:\boldsymbol{{understand}} \\ $$$$\boldsymbol{{the}}\:\mathrm{1}^{\boldsymbol{{st}}} \:\boldsymbol{{line}}\:\boldsymbol{{please}}\:\boldsymbol{{explaint}} \\ $$

Commented by benjo_mathlover last updated on 20/Oct/20

replace x by π−x

$${replace}\:{x}\:{by}\:\pi−{x}\: \\ $$

Answered by mindispower last updated on 20/Oct/20

=∫_0 ^π arctan(3^(cos(π−x)) )dx=∫arctan((1/3^(cos(x)) ))  arctan((1/x))=(π/2)−arctan(x),x>0  .....

$$=\int_{\mathrm{0}} ^{\pi} {arctan}\left(\mathrm{3}^{{cos}\left(\pi−{x}\right)} \right){dx}=\int{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}^{{cos}\left({x}\right)} }\right) \\ $$$${arctan}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\pi}{\mathrm{2}}−{arctan}\left({x}\right),{x}>\mathrm{0} \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com