Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200685 by Spillover last updated on 21/Nov/23

                     ∫_0 ^(π/4) ln (1+tanx)dx

$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{tan}{x}\right){dx}\: \\ $$$$ \\ $$

Answered by som(math1967) last updated on 22/Nov/23

 I=∫_0 ^(π/4) ln[1+tan((π/4)−x)]dx   I=∫_0 ^(π/4) ln[1+((1−tanx)/(1+tanx))]dx  I=∫_0 ^(π/4) ln((2/(1+tanx)))dx   I=∫_0 ^(π/4) ln2dx−∫_0 ^(π/4) ln(1+tanx)dx  I=∫_0 ^(π/4) ln2 dx−I  2I=ln2[x]_0 ^(π/4)    I=(π/8)ln2

$$\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left[\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right]{dx} \\ $$$$\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left[\mathrm{1}+\frac{\mathrm{1}−{tanx}}{\mathrm{1}+{tanx}}\right]{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tanx}}\right){dx} \\ $$$$\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}{dx}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tanx}\right){dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}\:{dx}−{I} \\ $$$$\mathrm{2}{I}={ln}\mathrm{2}\left[{x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$\:{I}=\frac{\pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com