Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208692 by Ghisom last updated on 21/Jun/24

∫_0 ^(π/2) xln sin x dx=?

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}\mathrm{ln}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$

Answered by Berbere last updated on 21/Jun/24

ln(sin(x))=−ln(2)−Σ_(k≥1) ((cos(2kx))/k)  proof ln(sin(x))=Re(ln(sin(x))  ln(sin(x)=ln(((e^(ix) −e^(−ix) )/(2i)))  ln(sin(x))=ln(e^(ix) (1−e^(−2ix) ))−ln(2)==ix−ln(2)−Σ(e^(−2kix) /k)  Reln(sin(x))=−ln(2)−Σ((cos(2kx))/k)  ∫_0 ^(π/2) xln(sin(x))dx=∫_0 ^(π/2) x(−ln(2)−Σ((cos(2kx))/k))  =[−(x^2 /2)ln(2)]_0 ^(π/2) −Σ_(k≥1) (1/k)∫_0 ^(π/2) xcos(2kx)dx^�   ∫xcos(2kx)dx=x.((sin(2kx))/(2k))+((cos(2kx))/(4k^2 ))  .−(π^2 /8)ln(2)−Σ_k (1/k)[((sin(2kx))/(2k))+((cos(2kx))/(4k^2 ))]_0 ^(π/2)   =−(π^2 /8)ln(2)−Σ(((−1)^k −1)/(4k^3 ))  =−(π^3 /8)ln(2)+Σ_(k≥0) (1/(2(2k+1)^3 ))=−(π^3 /8)ln(2)+(7/(16))ζ(3)

$${ln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}{kx}\right)}{{k}} \\ $$$${proof}\:{ln}\left({sin}\left({x}\right)\right)={Re}\left({ln}\left({sin}\left({x}\right)\right)\right. \\ $$$${ln}\left({sin}\left({x}\right)={ln}\left(\frac{{e}^{{ix}} −{e}^{−{ix}} }{\mathrm{2}{i}}\right)\right. \\ $$$${ln}\left({sin}\left({x}\right)\right)={ln}\left({e}^{{ix}} \left(\mathrm{1}−{e}^{−\mathrm{2}{ix}} \right)\right)−{ln}\left(\mathrm{2}\right)=={ix}−{ln}\left(\mathrm{2}\right)−\Sigma\frac{{e}^{−\mathrm{2}{kix}} }{{k}} \\ $$$${Reln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\Sigma\frac{{cos}\left(\mathrm{2}{kx}\right)}{{k}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {xln}\left({sin}\left({x}\right)\right){dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\left(−{ln}\left(\mathrm{2}\right)−\Sigma\frac{{cos}\left(\mathrm{2}{kx}\right)}{{k}}\right) \\ $$$$=\left[−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{ln}\left(\mathrm{2}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{k}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {xcos}\left(\mathrm{2}{kx}\right){d}\bar {{x}} \\ $$$$\int{xcos}\left(\mathrm{2}{kx}\right){dx}={x}.\frac{{sin}\left(\mathrm{2}{kx}\right)}{\mathrm{2}{k}}+\frac{{cos}\left(\mathrm{2}{kx}\right)}{\mathrm{4}{k}^{\mathrm{2}} } \\ $$$$.−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}{ln}\left(\mathrm{2}\right)−\underset{{k}} {\sum}\frac{\mathrm{1}}{{k}}\left[\frac{{sin}\left(\mathrm{2}{kx}\right)}{\mathrm{2}{k}}+\frac{{cos}\left(\mathrm{2}{kx}\right)}{\mathrm{4}{k}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}{ln}\left(\mathrm{2}\right)−\Sigma\frac{\left(−\mathrm{1}\right)^{{k}} −\mathrm{1}}{\mathrm{4}{k}^{\mathrm{3}} } \\ $$$$=−\frac{\pi^{\mathrm{3}} }{\mathrm{8}}{ln}\left(\mathrm{2}\right)+\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{3}} }=−\frac{\pi^{\mathrm{3}} }{\mathrm{8}}{ln}\left(\mathrm{2}\right)+\frac{\mathrm{7}}{\mathrm{16}}\zeta\left(\mathrm{3}\right) \\ $$

Commented by Ghisom last updated on 22/Jun/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com