Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 181643 by Frix last updated on 28/Nov/22

Ω=∫_0 ^(π/2) tan^(−1)  cos x dx  (I′d need the exact value if possible. I′ve  got no idea if and how this can be solved.)

$$\Omega=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{tan}^{−\mathrm{1}} \:\mathrm{cos}\:{x}\:{dx} \\ $$$$\left(\mathrm{I}'\mathrm{d}\:\mathrm{need}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{if}\:\mathrm{possible}.\:\mathrm{I}'\mathrm{ve}\right. \\ $$$$\left.\mathrm{got}\:\mathrm{no}\:\mathrm{idea}\:\mathrm{if}\:\mathrm{and}\:\mathrm{how}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}.\right) \\ $$

Commented by MJS_new last updated on 28/Nov/22

it′s possible to solve the integral but it′s very  complicated and I don′t think you could use  the exact value.  Ω≈.845291  www.wolframalpha.com gives the exact  indefinite integral which needs about 25  lines but only an approximate value for [0; π/2]

$$\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{very} \\ $$$$\mathrm{complicated}\:\mathrm{and}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{you}\:\mathrm{could}\:\mathrm{use} \\ $$$$\mathrm{the}\:\mathrm{exact}\:\mathrm{value}. \\ $$$$\Omega\approx.\mathrm{845291} \\ $$$$\mathrm{www}.\mathrm{wolframalpha}.\mathrm{com}\:\mathrm{gives}\:\mathrm{the}\:\mathrm{exact} \\ $$$$\mathrm{indefinite}\:\mathrm{integral}\:\mathrm{which}\:\mathrm{needs}\:\mathrm{about}\:\mathrm{25} \\ $$$$\mathrm{lines}\:\mathrm{but}\:\mathrm{only}\:\mathrm{an}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{for}\:\left[\mathrm{0};\:\pi/\mathrm{2}\right] \\ $$

Commented by Frix last updated on 28/Nov/22

Ok I see...

$$\mathrm{Ok}\:\mathrm{I}\:\mathrm{see}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com