Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 156793 by alcohol last updated on 15/Oct/21

∫_0 ^( (π/2)) ((sin2x)/(2−sin^2 2x))dx

$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{sin}\mathrm{2}{x}}{\mathrm{2}−{sin}^{\mathrm{2}} \mathrm{2}{x}}{dx} \\ $$

Answered by FongXD last updated on 15/Oct/21

=∫_0 ^(π/2) ((sin2x)/(1+cos^2 2x))dx=−(1/2)∫_0 ^(π/2) (((cos2x)′)/(1+cos^2 2x))dx  =−(1/2)[arctan(cos2x)]_0 ^(π/2) =−(1/2)(−(π/4)−(π/4))=(π/4)  therefore. ∫_0 ^(π/2) ((sin2x)/(2−sin^2 2x))dx=(π/4)

$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin2x}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{2x}}\mathrm{dx}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\mathrm{cos2x}\right)'}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{2x}}\mathrm{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{arctan}\left(\mathrm{cos2x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =−\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4}}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{therefore}.\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin2x}}{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \mathrm{2x}}\mathrm{dx}=\frac{\pi}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com