Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139353 by mohammad17 last updated on 26/Apr/21

∫_0 ^( (π/2)) sin^6 θ cos^4 θ dθ

$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} \theta\:{cos}^{\mathrm{4}} \theta\:{d}\theta \\ $$

Answered by Dwaipayan Shikari last updated on 26/Apr/21

∫_0 ^(π/2) sin^(2α−1) θ cos^(2β−1) θ dθ=((Γ(α)Γ(β))/(2Γ(α+β)))  ∫_0 ^(π/2) sin^6 θ cos^4 θ dθ=((Γ((7/2))Γ((5/2)))/(2Γ(6)))=(((5/2).(3/2).(1/2).(3/2).(1/2)Γ^2 ((1/2)))/(240))  =(3/2^9 )π=((3π)/(512))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}\alpha−\mathrm{1}} \theta\:{cos}^{\mathrm{2}\beta−\mathrm{1}} \theta\:{d}\theta=\frac{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}{\mathrm{2}\Gamma\left(\alpha+\beta\right)} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} \theta\:{cos}^{\mathrm{4}} \theta\:{d}\theta=\frac{\Gamma\left(\frac{\mathrm{7}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\mathrm{6}\right)}=\frac{\frac{\mathrm{5}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{2}}\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{240}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{9}} }\pi=\frac{\mathrm{3}\pi}{\mathrm{512}} \\ $$

Answered by ajfour last updated on 26/Apr/21

I=∫_0 ^( π/2) sin^6 θcos^4 θdθ    =∫_0 ^( π/2) cos^6 θsin^4 θdθ  2I=∫_0 ^( π/2) sin^4 θcos^4 θdθ  32I=∫_0 ^( π/2) sin^4 2θdθ  128I=∫_0 ^( π/2) (1−cos 4θ)^2 dθ  256I=∫_0 ^( π/2) (2−4cos 4θ+1+cos 8θ)dθ  256I=((3π)/2)  I=((3π)/(512))

$${I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{6}} \theta\mathrm{cos}\:^{\mathrm{4}} \theta{d}\theta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{cos}\:^{\mathrm{6}} \theta\mathrm{sin}\:^{\mathrm{4}} \theta{d}\theta \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{4}} \theta\mathrm{cos}\:^{\mathrm{4}} \theta{d}\theta \\ $$$$\mathrm{32}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{4}} \mathrm{2}\theta{d}\theta \\ $$$$\mathrm{128}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\mathrm{4}\theta\right)^{\mathrm{2}} {d}\theta \\ $$$$\mathrm{256}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left(\mathrm{2}−\mathrm{4cos}\:\mathrm{4}\theta+\mathrm{1}+\mathrm{cos}\:\mathrm{8}\theta\right){d}\theta \\ $$$$\mathrm{256}{I}=\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{3}\pi}{\mathrm{512}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com