Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 175351 by cortano1 last updated on 28/Aug/22

  ∫_0 ^(π/2)  ((sin^3 x)/(sin x+cos x)) dx =?

$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}\:^{\mathrm{3}} {x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:{dx}\:=? \\ $$

Answered by som(math1967) last updated on 28/Aug/22

I=∫_0 ^(π/2) ((sin^3 ((π/2)+0−x)dx)/(sin((π/2)+0−x)+cos((π/2)+0−x)))  =∫_0 ^(π/2) ((cos^3 xdx)/(cosx+sinx))  2I=∫_0 ^(π/2) ((sin^3 x+cos^3 x)/(sinx+cosx))dx  2I=∫_0 ^(π/2) (sin^2 x−sinxcox+cos^2 x)dx  2I=∫_0 ^(π/2) dx−(1/2)∫_0 ^(π/2) sin2xdx  2I=[x+((cos2x)/4)]_0 ^(π/2)   2I=((π/2)−(1/4))−(0+(1/4))  I=(π/4) −(1/4)

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{2}}+\mathrm{0}−{x}\right){dx}}{{sin}\left(\frac{\pi}{\mathrm{2}}+\mathrm{0}−{x}\right)+{cos}\left(\frac{\pi}{\mathrm{2}}+\mathrm{0}−{x}\right)} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}^{\mathrm{3}} {xdx}}{{cosx}+{sinx}} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{3}} {x}+{cos}^{\mathrm{3}} {x}}{{sinx}+{cosx}}{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}^{\mathrm{2}} {x}−{sinxcox}+{cos}^{\mathrm{2}} {x}\right){dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}\mathrm{2}{xdx} \\ $$$$\mathrm{2}{I}=\left[{x}+\frac{{cos}\mathrm{2}{x}}{\mathrm{4}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\mathrm{2}{I}=\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\right)−\left(\mathrm{0}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${I}=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented by cortano1 last updated on 28/Aug/22

by King Formula

$${by}\:{King}\:{Formula} \\ $$

Commented by som(math1967) last updated on 28/Aug/22

yes

$${yes} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com