Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 313 by Vishal Bhardwaj last updated on 25/Jan/15

∫_0 ^(π/2) log sinθ dθ

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\:{sin}\theta\:{d}\theta \\ $$

Answered by prakash jain last updated on 20/Dec/14

I=∫_0 ^(π/2) ln sin θdθ        .....(i)  put θ=(π/2)−α, dθ=−dα  I=∫_(π/2) ^0 ln sin ((π/2)−α)(−dα)  =−∫_(π/2) ^0 ln cos αdα=∫_0 ^(π/2) ln cos αdα  =∫_0 ^(π/2) ln cos θdθ       ....(ii)  add (i) and (ii)  2I=∫_0 ^(π/2) (ln sin θ+ln cos θ)dθ  2I=∫_0 ^(π/2) ln ((sin 2θ)/2) dθ  2I=∫_0 ^(π/2) (ln sin 2θ −ln 2) dθ        2I=∫_0 ^(π/2) ln sin 2θ dθ−∫_0 ^(π/2) ln 2 dθ        In first integral put 2θ=β ,2dθ=dβ so  the equation one now with updated limits  2I=∫_0 ^π ln sin β(dβ/2)−∫_0 ^(π/2) ln 2 dθ    2I=(1/2)∫_0 ^π ln sin β dβ−∫_0 ^(π/2) ln 2 dθ  ....(iii)  Now we will evaluate first integral  ∫_0 ^π ln sin β dβ=∫_0 ^(π/2) ln sin β dβ+∫_(π/2) ^π ln sin β dβ  ∫_0 ^π ln sin β dβ==I+∫_(π/2) ^π ln sin βdβ  put β=π−t dβ=−dt  ∫_0 ^π ln sin β dβ==I+∫_(π/2) ^0 ln sin (π−t)(−dt)  ∫_0 ^π ln sin β dβ==I−∫_(π/2) ^0 ln sin tdt  ∫_0 ^π ln sin β dβ==I+∫_0 ^(π/2) ln sin t dt  ∫_0 ^π ln sin β dβ==I+I=2I     ....(iv)  putting this value in (iii)  2I=(1/2)(2I)−∫_0 ^(π/2) ln 2dθ  2I=I−(π/2)ln 2  I=−(π/2)ln 2

$${I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{sin}\:\theta{d}\theta\:\:\:\:\:\:\:\:.....\left({i}\right) \\ $$$$\mathrm{put}\:\theta=\frac{\pi}{\mathrm{2}}−\alpha,\:{d}\theta=−{d}\alpha \\ $$$${I}=\int_{\pi/\mathrm{2}} ^{\mathrm{0}} \mathrm{ln}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right)\left(−{d}\alpha\right) \\ $$$$=−\int_{\pi/\mathrm{2}} ^{\mathrm{0}} \mathrm{ln}\:\mathrm{cos}\:\alpha{d}\alpha=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{cos}\:\alpha{d}\alpha \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{cos}\:\theta{d}\theta\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$$\mathrm{add}\:\left({i}\right)\:\mathrm{and}\:\left({ii}\right) \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\mathrm{ln}\:\mathrm{sin}\:\theta+\mathrm{ln}\:\mathrm{cos}\:\theta\right){d}\theta \\ $$$$\mathrm{2I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\:{d}\theta \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\mathrm{ln}\:\mathrm{sin}\:\mathrm{2}\theta\:−\mathrm{ln}\:\mathrm{2}\right)\:{d}\theta\:\:\:\:\:\: \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{sin}\:\mathrm{2}\theta\:{d}\theta−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{2}\:{d}\theta\:\:\:\:\:\: \\ $$$$\mathrm{In}\:\mathrm{first}\:\mathrm{integral}\:\mathrm{put}\:\mathrm{2}\theta=\beta\:,\mathrm{2}{d}\theta={d}\beta\:\mathrm{so} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{one}\:\mathrm{now}\:\mathrm{with}\:\mathrm{updated}\:\mathrm{limits} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\frac{{d}\beta}{\mathrm{2}}−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{2}\:{d}\theta\:\: \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{2}\:{d}\theta\:\:....\left({iii}\right) \\ $$$$\mathrm{Now}\:\mathrm{we}\:\mathrm{will}\:\mathrm{evaluate}\:\mathrm{first}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta+\int_{\pi/\mathrm{2}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta=={I}+\int_{\pi/\mathrm{2}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta{d}\beta \\ $$$$\mathrm{put}\:\beta=\pi−{t}\:{d}\beta=−{dt} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta=={I}+\int_{\pi/\mathrm{2}} ^{\mathrm{0}} \mathrm{ln}\:\mathrm{sin}\:\left(\pi−{t}\right)\left(−{dt}\right) \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta=={I}−\int_{\pi/\mathrm{2}} ^{\mathrm{0}} \mathrm{ln}\:\mathrm{sin}\:{tdt} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta=={I}+\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{sin}\:{t}\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\mathrm{sin}\:\beta\:{d}\beta=={I}+{I}=\mathrm{2}{I}\:\:\:\:\:....\left({iv}\right) \\ $$$$\mathrm{putting}\:\mathrm{this}\:\mathrm{value}\:\mathrm{in}\:\left({iii}\right) \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{I}\right)−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{2}{d}\theta \\ $$$$\mathrm{2}{I}={I}−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${I}=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com