Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140614 by bramlexs22 last updated on 10/May/21

∫ _0^(π/2)  ln (sin x) sec^2 x dx =?

$$\int\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{x}\right)\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:=?\: \\ $$$$ \\ $$

Answered by bemath last updated on 10/May/21

Answered by Dwaipayan Shikari last updated on 10/May/21

∫_0 ^(π/2) log(sinx)sec^2 xdx  =[log(sinx)tanx]_0 ^(π/2) −∫_0 ^(π/2) tanx.((cosx)/(sinx))dx  =0−(π/2)=−(π/2)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right){sec}^{\mathrm{2}} {xdx} \\ $$$$=\left[{log}\left({sinx}\right){tanx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {tanx}.\frac{{cosx}}{{sinx}}{dx} \\ $$$$=\mathrm{0}−\frac{\pi}{\mathrm{2}}=−\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com