Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109129 by bemath last updated on 21/Aug/20

 ∫_0 ^(π/2)  ((ln (cos x)ln (sin x))/(tan x)) dx

$$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{tan}\:{x}}\:{dx} \\ $$

Answered by EmericGent last updated on 21/Aug/20

= I =(1/2)∫_0 ^(π/2) ((ln(1-sin^2 x)ln(sin x))/(sin x)) cos x dx  t = sin x ⇒ dt = cos x dx  I = (1/2)∫_0 ^1 ((ln(1-t^2 )ln t)/t) dt  I = −(1/2) ∫_0 ^1 ln t Σ_(k=1) ^∞ (t^(2k-1) /k) dt  u = ln t ⇒ u′ = (1/t)  v′ = (t^(2k-1) /k) ⇒ v = (t^(2k) /(2k^2 ))  I = −(1/2)Σ_(k=1) ^∞ (1/(2k^2 ))(t^(2k) ln t]_0 ^1 −∫_0 ^1 t^(2k-1)  dt)  I = (1/2)Σ_(k=1) ^∞ ((t^(2k) ]_0 ^1 )/(4k^3 )) = (1/8) Σ_(k=1) ^∞ (1/k^3 ) = (1/8) ζ(3)

$$=\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}-{sin}^{\mathrm{2}} {x}\right){ln}\left({sin}\:{x}\right)}{{sin}\:{x}}\:{cos}\:{x}\:{dx} \\ $$$${t}\:=\:{sin}\:{x}\:\Rightarrow\:{dt}\:=\:{cos}\:{x}\:{dx} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}-{t}^{\mathrm{2}} \right){ln}\:{t}}{{t}}\:{dt} \\ $$$${I}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\:{t}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{t}^{\mathrm{2}{k}-\mathrm{1}} }{{k}}\:{dt} \\ $$$${u}\:=\:{ln}\:{t}\:\Rightarrow\:{u}'\:=\:\frac{\mathrm{1}}{{t}} \\ $$$${v}'\:=\:\frac{{t}^{\mathrm{2}{k}-\mathrm{1}} }{{k}}\:\Rightarrow\:{v}\:=\:\frac{{t}^{\mathrm{2}{k}} }{\mathrm{2}{k}^{\mathrm{2}} } \\ $$$$\left.{I}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }\left({t}^{\mathrm{2}{k}} {ln}\:{t}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}{k}-\mathrm{1}} \:{dt}\right) \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left.{t}^{\mathrm{2}{k}} \right]_{\mathrm{0}} ^{\mathrm{1}} }{\mathrm{4}{k}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}\:\zeta\left(\mathrm{3}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com