Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137894 by EnterUsername last updated on 08/Apr/21

∫_0 ^(π/2) ln^2 (sinx)dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{sinx}\right)\mathrm{dx} \\ $$

Answered by Dwaipayan Shikari last updated on 08/Apr/21

∫_0 ^(π/2) sin^a (x)=((Γ(((a+1)/2))Γ((1/2))  )/(2Γ((a/2)+1)))=τ(a)  τ′′(0)=∫_0 ^(π/2) log^2 (sinx)dx  τ′(0)=∫_0 ^(π/2) log(sinx)dx=−(π/2)log(2)  log(τ(a))=log(Γ(((a+1)/2)))+log((√π)/2)−log(Γ((a/2)+1))  ((τ′(a))/(τ(a)))=(1/2)ψ(((a+1)/2))−ψ((a/2)+1)⇒τ′′(a)=((τ′(a))/2)(ψ(((a+1)/2))−ψ((a/2)+1))+((τ(a))/4)(ψ′(((a+1)/2))−ψ′((a/2)+1))  ⇒τ′′(0)=((τ′(0))/2)(−γ+γ−log(4))+(π/8)((π^2 /2)−(π^2 /6))  =((−π)/2)log(2)(−log(4))+(π^3 /(24))=(π/2)log^2 (2)+(π^3 /(24))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{a}} \left({x}\right)=\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:}{\mathrm{2}\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)}=\tau\left({a}\right) \\ $$$$\tau''\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}^{\mathrm{2}} \left({sinx}\right){dx} \\ $$$$\tau'\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right){dx}=−\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right) \\ $$$${log}\left(\tau\left({a}\right)\right)={log}\left(\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\right)+{log}\left(\sqrt{\pi}/\mathrm{2}\right)−{log}\left(\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\right) \\ $$$$\frac{\tau'\left({a}\right)}{\tau\left({a}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\Rightarrow\tau''\left({a}\right)=\frac{\tau'\left({a}\right)}{\mathrm{2}}\left(\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\right)+\frac{\tau\left({a}\right)}{\mathrm{4}}\left(\psi'\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)−\psi'\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\right) \\ $$$$\Rightarrow\tau''\left(\mathrm{0}\right)=\frac{\tau'\left(\mathrm{0}\right)}{\mathrm{2}}\left(−\gamma+\gamma−{log}\left(\mathrm{4}\right)\right)+\frac{\pi}{\mathrm{8}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right) \\ $$$$=\frac{−\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right)\left(−{log}\left(\mathrm{4}\right)\right)+\frac{\pi^{\mathrm{3}} }{\mathrm{24}}=\frac{\pi}{\mathrm{2}}{log}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$

Commented by Dwaipayan Shikari last updated on 08/Apr/21

May be some error. Trying to do this again

$${May}\:{be}\:{some}\:{error}.\:{Trying}\:{to}\:{do}\:{this}\:{again} \\ $$

Commented by Dwaipayan Shikari last updated on 08/Apr/21

Fixed!

$${Fixed}! \\ $$

Commented by Dwaipayan Shikari last updated on 08/Apr/21

If  f(α)=Γ((α/2))⇒f′(α)=(1/2)Γ′((α/2))=(1/2)Γ((α/2))ψ((α/2))  From the definition of Digamma function  ((Γ′(α))/(Γ(α)))=ψ(α)=−γ+Σ_(n=0) ^∞ (1/(n+1))−(1/(n+α))

$${If}\:\:{f}\left(\alpha\right)=\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)\Rightarrow{f}'\left(\alpha\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma'\left(\frac{\alpha}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)\psi\left(\frac{\alpha}{\mathrm{2}}\right) \\ $$$${From}\:{the}\:{definition}\:{of}\:{Digamma}\:{function} \\ $$$$\frac{\Gamma'\left(\alpha\right)}{\Gamma\left(\alpha\right)}=\psi\left(\alpha\right)=−\gamma+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\alpha} \\ $$

Commented by EnterUsername last updated on 08/Apr/21

(π^3 /(24))+((πln^2 2)/2)

$$\frac{\pi^{\mathrm{3}} }{\mathrm{24}}+\frac{\pi\mathrm{ln}^{\mathrm{2}} \mathrm{2}}{\mathrm{2}} \\ $$

Commented by EnterUsername last updated on 08/Apr/21

Excuse me please, if f(α)=Γ((α/2)) then what is f ′′(α) ?

$${Excuse}\:{me}\:{please},\:{if}\:{f}\left(\alpha\right)=\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)\:{then}\:{what}\:{is}\:{f}\:''\left(\alpha\right)\:? \\ $$

Commented by EnterUsername last updated on 08/Apr/21

Thanks

$${Thanks} \\ $$

Commented by EnterUsername last updated on 08/Apr/21

I meant f ′′(α) instead of f ′(α)

$${I}\:{meant}\:{f}\:''\left(\alpha\right)\:{instead}\:{of}\:{f}\:'\left(\alpha\right) \\ $$

Commented by Dwaipayan Shikari last updated on 08/Apr/21

Same method  f′(a)=(1/2)Γ((a/2))ψ((a/2)) ⇒f′′(a)=(1/2).(∂/∂a)(Γ((a/2))ψ((a/2)))  =(1/4)Γ′((a/2))ψ((a/2))+(1/4)ψ′((a/2))Γ((a/2))  =(1/4)Γ((a/2))ψ^2 ((a/2))+(1/4)ψ′((a/2))Γ((a/2))

$${Same}\:{method} \\ $$$${f}'\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{{a}}{\mathrm{2}}\right)\psi\left(\frac{{a}}{\mathrm{2}}\right)\:\Rightarrow{f}''\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\partial}{\partial{a}}\left(\Gamma\left(\frac{{a}}{\mathrm{2}}\right)\psi\left(\frac{{a}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\Gamma'\left(\frac{{a}}{\mathrm{2}}\right)\psi\left(\frac{{a}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\psi'\left(\frac{{a}}{\mathrm{2}}\right)\Gamma\left(\frac{{a}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\Gamma\left(\frac{{a}}{\mathrm{2}}\right)\psi^{\mathrm{2}} \left(\frac{{a}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\psi'\left(\frac{{a}}{\mathrm{2}}\right)\Gamma\left(\frac{{a}}{\mathrm{2}}\right) \\ $$

Commented by EnterUsername last updated on 08/Apr/21

Thanks for the inspiration

$${Thanks}\:{for}\:{the}\:{inspiration} \\ $$

Answered by EnterUsername last updated on 08/Apr/21

∫_0 ^(π/2) ln^2 (sinx)dx  f(α)=∫_0 ^(π/2) sin^(α−1) xdx=(((√π)Γ((α/2)))/(2Γ(((α+1)/2))))  ln(f(α))=ln(Γ((α/2)))−ln(Γ(((α+1)/2)))+ln(((√π)/2))  ((f ′(α))/(f(α)))=((Γ′((α/2)))/(2Γ((α/2))))−((Γ′(((α+1)/2)))/(2Γ(((α+1)/2))))=(1/2)ψ((α/2))−(1/2)ψ(((α+1)/2))  ln(f ′(α))−ln(f(α))=ln(ψ((α/2))−ψ(((α+1)/2)))−ln2  ((f ′′(α))/(f ′(α)))−((f ′(α))/(f(α)))=(1/2)∙((ψ′((α/2))−ψ′(((α+1)/2)))/(ψ((α/2))−ψ(((α+1)/2))))  f(1)=(π/2) , f ′(1)=((f(1))/2)(ψ((1/2))−ψ(1))=(π/4)(−2ln2)=−((πln2)/2)  ψ′(1)=ζ(2)=(π^2 /6) , ψ′((1/2))=(π^2 /2)  ⇒((2f ′′(1))/(−πln2))+((πln2)/π)=(1/2)∙(((π^2 /2)−(π^2 /6))/(−2ln2)) ⇒−((2f ′′(1))/(πln2))+ln2=−(π^2 /(12ln2))  ⇒∫_0 ^(π/2) ln^2 (sinx)dx=f ′′(1)=((πln^2 2)/2)+(π^3 /(24))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{sinx}\right)\mathrm{dx} \\ $$$$\mathrm{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\alpha−\mathrm{1}} \mathrm{xdx}=\frac{\sqrt{\pi}\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\mathrm{ln}\left(\mathrm{f}\left(\alpha\right)\right)=\mathrm{ln}\left(\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)\right)−\mathrm{ln}\left(\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\right)+\mathrm{ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{f}\:'\left(\alpha\right)}{\mathrm{f}\left(\alpha\right)}=\frac{\Gamma'\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)}−\frac{\Gamma'\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\alpha}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{ln}\left(\mathrm{f}\:'\left(\alpha\right)\right)−\mathrm{ln}\left(\mathrm{f}\left(\alpha\right)\right)=\mathrm{ln}\left(\psi\left(\frac{\alpha}{\mathrm{2}}\right)−\psi\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\right)−\mathrm{ln2} \\ $$$$\frac{\mathrm{f}\:''\left(\alpha\right)}{\mathrm{f}\:'\left(\alpha\right)}−\frac{\mathrm{f}\:'\left(\alpha\right)}{\mathrm{f}\left(\alpha\right)}=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\psi'\left(\frac{\alpha}{\mathrm{2}}\right)−\psi'\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)}{\psi\left(\frac{\alpha}{\mathrm{2}}\right)−\psi\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}}\:,\:\mathrm{f}\:'\left(\mathrm{1}\right)=\frac{\mathrm{f}\left(\mathrm{1}\right)}{\mathrm{2}}\left(\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\mathrm{1}\right)\right)=\frac{\pi}{\mathrm{4}}\left(−\mathrm{2ln2}\right)=−\frac{\pi\mathrm{ln2}}{\mathrm{2}} \\ $$$$\psi'\left(\mathrm{1}\right)=\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:,\:\psi'\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{2f}\:''\left(\mathrm{1}\right)}{−\pi\mathrm{ln2}}+\frac{\pi\mathrm{ln2}}{\pi}=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}}{−\mathrm{2ln2}}\:\Rightarrow−\frac{\mathrm{2f}\:''\left(\mathrm{1}\right)}{\pi\mathrm{ln2}}+\mathrm{ln2}=−\frac{\pi^{\mathrm{2}} }{\mathrm{12ln2}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{sinx}\right)\mathrm{dx}=\mathrm{f}\:''\left(\mathrm{1}\right)=\frac{\pi\mathrm{ln}^{\mathrm{2}} \mathrm{2}}{\mathrm{2}}+\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com