Question Number 152420 by tabata last updated on 28/Aug/21 | ||
$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{e}^{{sinx}} }{{e}^{{cosx}} +{e}^{{sinx}} }{dx}\:\:\:? \\ $$ | ||
Answered by mindispower last updated on 28/Aug/21 | ||
$${f}\left({a}+{b}−{x}\right)+{f}\left({x}\right)={c} \\ $$$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}{c}\left({b}−{a}\right) \\ $$ | ||
Answered by Lordose last updated on 28/Aug/21 | ||
$$\Omega\:=\:\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \frac{\mathrm{e}^{\mathrm{sin}\left(\mathrm{x}\right)} }{\mathrm{e}^{\mathrm{cos}\left(\mathrm{x}\right)} +\mathrm{e}^{\mathrm{sin}\left(\mathrm{x}\right)} }\mathrm{dx}\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\Omega\:\overset{\boldsymbol{\mathrm{king}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{rule}}} {=}\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \frac{\mathrm{e}^{\mathrm{cos}\left(\mathrm{x}\right)} }{\mathrm{e}^{\mathrm{cos}\left(\mathrm{x}\right)} +\mathrm{e}^{\mathrm{sin}\left(\mathrm{x}\right)} }\mathrm{dx}\:\:\:\left(\mathrm{2}\right) \\ $$$$\frac{\left(\mathrm{1}\right)\:+\:\left(\mathrm{2}\right)}{\mathrm{2}}\::: \\ $$$$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \mathrm{1dx}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{4}} \\ $$ | ||