Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 117216 by bobhans last updated on 10/Oct/20

  ∫_0 ^(π/2) (dx/( (√(sin x)))) =?

$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{dx}}{\:\sqrt{\mathrm{sin}\:\mathrm{x}}}\:=?\: \\ $$$$ \\ $$

Answered by TANMAY PANACEA last updated on 10/Oct/20

2∫_0 ^(π/2) sin^(2p−1) xcos^(2q−1) x dx=((⌈(p)⌈(q))/(⌈p+q)))  (1/2)×2∫_0 ^(π/2) (sinx)^(2×(1/4)−1) cos^(2×(1/2)−1) dx  =(1/2)×((⌈((1/4)) ×⌈(1/2))/(⌈((1/4)+(1/2))))

$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} {xcos}^{\mathrm{2}{q}−\mathrm{1}} {x}\:{dx}=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\left.\lceil{p}+{q}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sinx}\right)^{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {cos}^{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\:×\lceil\frac{\mathrm{1}}{\mathrm{2}}}{\lceil\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\:\: \\ $$

Commented by bobhans last updated on 10/Oct/20

this is Γ =  gamma function?

$$\mathrm{this}\:\mathrm{is}\:\Gamma\:=\:\:\mathrm{gamma}\:\mathrm{function}? \\ $$

Commented by TANMAY PANACEA last updated on 10/Oct/20

yes sir

$${yes}\:{sir} \\ $$

Commented by bobhans last updated on 10/Oct/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com