Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151425 by peter frank last updated on 21/Aug/21

∫_0 ^(π/2) (dx/((cos x+(√3) sin x)^2 ))dx=(1/( (√3)))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\left(\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$

Answered by Olaf_Thorendsen last updated on 21/Aug/21

I = ∫_0 ^(π/2) (dx/((cosx+(√3)sinx)^2 ))  I = (1/4)∫_0 ^(π/2) (dx/(((1/2)cosx+((√3)/2)sinx)^2 ))  I = (1/4)∫_0 ^(π/2) (dx/((cos(π/3)cosx+sin(π/3)sinx)^2 ))  I = (1/4)∫_0 ^(π/2) (dx/(cos^2 (x−(π/3))))  I = (1/4)∫_(−(π/3)) ^(π/6) (du/(cos^2 u))  I = (1/4)[tanu]_(−(π/3)) ^(π/6)   I = (1/4)((1/( (√3)))+(√3)) = (1/( (√3)))

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left(\mathrm{cos}{x}+\sqrt{\mathrm{3}}\mathrm{sin}{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}{x}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{sin}{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left(\mathrm{cos}\frac{\pi}{\mathrm{3}}\mathrm{cos}{x}+\mathrm{sin}\frac{\pi}{\mathrm{3}}\mathrm{sin}{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{cos}^{\mathrm{2}} \left({x}−\frac{\pi}{\mathrm{3}}\right)} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{−\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{6}}} \frac{{du}}{\mathrm{cos}^{\mathrm{2}} {u}} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{tan}{u}\right]_{−\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{6}}} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+\sqrt{\mathrm{3}}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$

Answered by MJS_new last updated on 21/Aug/21

∫(dx/((cos x +(√3)sin x)^2 ))=       [t=tan x → dx=cos^2  x dt]  =∫(dt/(((√3)t+1)^2 ))=−(1/(3t+(√3)))=(1/( (√3)+3tan x))+C  [(1/( (√3)+3tan x))]_0 ^(π/2) =((√3)/3)

$$\int\frac{{dx}}{\left(\mathrm{cos}\:{x}\:+\sqrt{\mathrm{3}}\mathrm{sin}\:{x}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\int\frac{{dt}}{\left(\sqrt{\mathrm{3}}{t}+\mathrm{1}\right)^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{3}{t}+\sqrt{\mathrm{3}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{3tan}\:{x}}+{C} \\ $$$$\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{3tan}\:{x}}\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com