Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 129185 by Dwaipayan Shikari last updated on 13/Jan/21

∫_0 ^(π/2) (dx/( (√(97+sin^2 x))))  Hypergeometric form

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{97}+{sin}^{\mathrm{2}} {x}}}\:\:{Hypergeometric}\:{form} \\ $$

Commented by Dwaipayan Shikari last updated on 13/Jan/21

I have found (π/(2(√(97))))  _2 F_1 ((1/2),(1/2);1;−(1/(97)))

$${I}\:{have}\:{found}\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{97}}}\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{1};−\frac{\mathrm{1}}{\mathrm{97}}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 13/Jan/21

(1/( (√(97))))∫_0 ^(π/2) (dx/( (√(1−(−(1/(97))sin^2 x)))))                 k^2 =−(1/(97))  =(1/( (√(97))))∫_0 ^(π/2) (1/( (√(1−k^2 sin^2 x))))dx                 =(1/( (√(97))))Σ_(n=0) ^∞ ((((1/2))_n )/(n!))∫_0 ^(π/2) k^(2n) sin^(2n) x dx=(1/( (√(97))))Σ_(n=0) ^∞ ((((1/2))_n )/(n!))k^(2n) ∫_0 ^(π/2) sin^(2n) x dx  =(1/( 2(√(97))))Σ_(n=0) ^∞ ((((1/2))_n )/(n!))k^(2n) .((Γ(n+(1/2))Γ((1/2)))/(Γ(n+1)))=((√π)/( 2(√(97))))Σ_(n=0) ^∞ ((((1/2))_n ^2 Γ((1/2)))/((1)_n n!))(k^2 )^n   =(π/( 2(√(97)))) _2 F_1 ((1/2),(1/2);1;k^2 )=(π/(2 (√(97)))) _2 F_1 ((1/2),(1/2);1;−(1/(97)))  Γ(n+(1/2))=Γ((1/2))((1/2))_n

$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{97}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{97}}{sin}^{\mathrm{2}} {x}\right)}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}^{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{97}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{97}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}}}{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{97}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {k}^{\mathrm{2}{n}} {sin}^{\mathrm{2}{n}} {x}\:{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{97}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!}{k}^{\mathrm{2}{n}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{n}} {x}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{97}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!}{k}^{\mathrm{2}{n}} .\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({n}+\mathrm{1}\right)}=\frac{\sqrt{\pi}}{\:\mathrm{2}\sqrt{\mathrm{97}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} ^{\mathrm{2}} \Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\left(\mathrm{1}\right)_{{n}} {n}!}\left({k}^{\mathrm{2}} \right)^{{n}} \\ $$$$=\frac{\pi}{\:\mathrm{2}\sqrt{\mathrm{97}}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{1};{k}^{\mathrm{2}} \right)=\frac{\pi}{\mathrm{2}\:\sqrt{\mathrm{97}}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{1};−\frac{\mathrm{1}}{\mathrm{97}}\right) \\ $$$$\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com