Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132534 by liberty last updated on 15/Feb/21

∫_0 ^(π/2)  (dx/(1+sin x))  →diverges or converges?

0π2dx1+sinxdivergesorconverges?

Commented by MJS_new last updated on 15/Feb/21

we only want to know if it converges or not  0≤x≤(π/2) ⇒ (1/2)≤(1/(1+sin x))≤1 ⇒ converges

weonlywanttoknowifitconvergesornot0xπ21211+sinx1converges

Answered by Olaf last updated on 15/Feb/21

Ω = ∫_0 ^(π/2) (dx/(1+sinx))  Ω = ∫_0 ^(π/2) (dx/(1+((2t)/(1+t^2 )))) with t = tan(x/2)  Ω = ∫_0 ^(π/2) (1/(1+t^2 )).((2dt)/(1+t^2 ))  Ω = −2[(1/(1+t))]_0 ^(π/2)  = −2[(1/(1+tan(x/2)))]_0 ^(π/2)   Ω = −2[(1/2)−1] = 1

Ω=0π2dx1+sinxΩ=0π2dx1+2t1+t2witht=tanx2Ω=0π211+t2.2dt1+t2Ω=2[11+t]0π2=2[11+tanx2]0π2Ω=2[121]=1

Answered by EDWIN88 last updated on 15/Feb/21

 We want to evaluate ∫_( 0) ^( (π/2))  (dx/(1+sin x)) .   I=∫_0 ^(π/2) (dx/(1+2sin ((x/2))cos ((x/2))))  Wierrstrass Substitution  let tan ((x/2))= ∅ ⇒ { ((x=(π/2)→∅=1)),((x=0→∅=0)) :}    dx = 2cos^2 ((x/2))d∅  I=∫_0 ^1  (1/(1+2((∅/(1+∅^2 ))))).((2/(1+∅^2 )))d∅  I= ∫_0 ^1 (2/((1+∅)^2 ))d∅ = −2 [(1/(1+∅)) ]_0 ^1   I=−2 [ (1/2)−1 ]= 1 (converges )

Wewanttoevaluate0π2dx1+sinx.I=0π/2dx1+2sin(x2)cos(x2)WierrstrassSubstitutionlettan(x2)={x=π2=1x=0=0dx=2cos2(x2)dI=0111+2(1+2).(21+2)dI=012(1+)2d=2[11+]01I=2[121]=1(converges)

Commented by liberty last updated on 15/Feb/21

Answered by Ar Brandon last updated on 15/Feb/21

∫_0 ^(π/2) ((1−sinx)/(cos^2 x))dx=[tanx−(1/(cosx))]_0 ^(π/2) =1

0π21sinxcos2xdx=[tanx1cosx]0π2=1

Commented by EDWIN88 last updated on 15/Feb/21

 (1/(tan (π/2)))−(1/(cos (π/2))) =? ⇒(1/∞)−(1/0) ?

1tanπ21cosπ2=?110?

Commented by Ar Brandon last updated on 15/Feb/21

lim_(x→(π/2)) {tanx−(1/(cosx))}=lim_(x→(π/2)) {((sinx−1)/(cosx))}=lim_(x→(π/2)) {((cosx)/(−sinx))}=0

limxπ2{tanx1cosx}=limxπ2{sinx1cosx}=limxπ2{cosxsinx}=0

Commented by Ar Brandon last updated on 15/Feb/21

tan(π/2)−(1/(cos(π/2)))=(1/(cos(π/2)))−(1/(cos(π/2)))=0

tanπ21cosπ2=1cosπ21cosπ2=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com