Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 83146 by 09658867628 last updated on 28/Feb/20

∫_( 0) ^(π/2)   ((√(cot x))/((√(cot x)) + (√(tan x)))) dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\frac{\sqrt{\mathrm{cot}\:{x}}}{\sqrt{\mathrm{cot}\:{x}}\:+\:\sqrt{\mathrm{tan}\:{x}}}\:{dx}\:= \\ $$

Answered by Kunal12588 last updated on 28/Feb/20

I=∫_0 ^( π/2) ((√(cot x))/((√(cot x))+(√(tan x))))dx  ⇒I=∫_0 ^( π/2) ((√(tan x))/((√(tan x))+(√(cot x))))dx  ⇒I=(1/2)∫_0 ^( π/2) dx  ⇒I=(1/2)×(π/2)=(π/4)  ∫_( 0) ^(π/2)   ((√(cot x))/((√(cot x)) + (√(tan x)))) dx =(π/4)

$${I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{\sqrt{{cot}\:{x}}}{\sqrt{{cot}\:{x}}+\sqrt{{tan}\:{x}}}{dx} \\ $$$$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{\sqrt{{tan}\:{x}}}{\sqrt{{tan}\:{x}}+\sqrt{{cot}\:{x}}}{dx} \\ $$$$\Rightarrow{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {dx} \\ $$$$\Rightarrow{I}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}}=\frac{\pi}{\mathrm{4}} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\frac{\sqrt{\mathrm{cot}\:{x}}}{\sqrt{\mathrm{cot}\:{x}}\:+\:\sqrt{\mathrm{tan}\:{x}}}\:{dx}\:=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Answered by niroj last updated on 28/Feb/20

 let, I= ∫_0 ^(π/2)  (( (√(cot x)))/( (√(cot x)) +(√(tan x))))dx.....(i)      = ∫_0 ^(π/2)   ((√( cot ((π/2)−x)))/( (√(cot ((π/2))) −x)+ (√(tan ((π/2) −x)))))dx     ∵ ∫_0 ^( a) xdx=∫_0 ^a (a−x)dx   = ∫_0 ^( (π/2))  ((√(tan x))/( (√(tan x)) +(√(cot x))))dx......(ii)    added (i)&(ii)    2I= ∫_0 ^(π/2) (  ((   (√(cot x)))/( (√(cot x))  +(√(tan x)))) + ((√(tan x))/(  (√(tan x)) +(√(cot x)))))dx    2I= ∫_0 ^( (π/2))   (((  (√(cot x))  +(√(tan x)))/(  (√(cot x))+(√(tan x)))))dx    2I= ∫_0 ^(π/2)  dx    2I= [ x]_0 ^(π/2)     2I= ((π/2)−0)      2I= (π/2) ⇒ I= (π/4) //.

$$\:\mathrm{let},\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\:\sqrt{\mathrm{cot}\:\mathrm{x}}}{\:\sqrt{\mathrm{cot}\:\mathrm{x}}\:+\sqrt{\mathrm{tan}\:\mathrm{x}}}\mathrm{dx}.....\left(\mathrm{i}\right) \\ $$$$\:\:\:\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\sqrt{\:\mathrm{cot}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}}{\left.\:\sqrt{\mathrm{cot}\:\left(\frac{\pi}{\mathrm{2}}\right.}\:−\mathrm{x}\right)+\:\sqrt{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}\:−\mathrm{x}\right)}}\mathrm{dx}\:\:\:\:\:\because\:\int_{\mathrm{0}} ^{\:\mathrm{a}} \mathrm{xdx}=\int_{\mathrm{0}} ^{\mathrm{a}} \left(\mathrm{a}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}}{\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:+\sqrt{\mathrm{cot}\:\mathrm{x}}}\mathrm{dx}......\left(\mathrm{ii}\right) \\ $$$$\:\:\mathrm{added}\:\left(\mathrm{i}\right)\&\left(\mathrm{ii}\right) \\ $$$$\:\:\mathrm{2I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\:\frac{\:\:\:\sqrt{\mathrm{cot}\:\mathrm{x}}}{\:\sqrt{\mathrm{cot}\:\mathrm{x}}\:\:+\sqrt{\mathrm{tan}\:\mathrm{x}}}\:+\:\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}}{\:\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:+\sqrt{\mathrm{cot}\:\mathrm{x}}}\right)\mathrm{dx} \\ $$$$\:\:\mathrm{2I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\:\left(\frac{\:\:\sqrt{\mathrm{cot}\:\mathrm{x}}\:\:+\sqrt{\mathrm{tan}\:\mathrm{x}}}{\:\:\sqrt{\mathrm{cot}\:\mathrm{x}}+\sqrt{\mathrm{tan}\:\mathrm{x}}}\right)\mathrm{dx} \\ $$$$\:\:\mathrm{2I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{dx} \\ $$$$\:\:\mathrm{2I}=\:\left[\:\mathrm{x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\mathrm{2I}=\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{0}\right) \\ $$$$\:\:\:\:\mathrm{2I}=\:\frac{\pi}{\mathrm{2}}\:\Rightarrow\:\mathrm{I}=\:\frac{\pi}{\mathrm{4}}\://. \\ $$$$ \\ $$$$ \\ $$

Commented by peter frank last updated on 28/Feb/20

thank you both

$${thank}\:{you}\:{both} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com