Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167328 by cortano1 last updated on 13/Mar/22

      ∫_0 ^( π/2)  ((cos x+cos^5 x sin x)/( (√(1+cos^2 x)))) dx =?

$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\frac{\mathrm{cos}\:{x}+\mathrm{cos}\:^{\mathrm{5}} {x}\:\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}}\:{dx}\:=? \\ $$

Answered by MJS_new last updated on 13/Mar/22

∫((cos x +cos^5  x sin x)/( (√(1+cos^2  x))))dx=       [t=arcsin ((sin x)/( (√2))) → dx=((√(1+cos^2  x))/(cos x))dt]  =  ...  =((√2)/4)∫(sin 5t −sin 3t +2sin t +3(√2))dt=  =−((√2)/(20))cos 5t +((√2)/(12))cos 3t −((√2)/2)cos t +t=  ...  =arcsin ((sin x)/( (√2))) −((√(1+cos^2  x))/(15))(3cos^4  x −4cos^2  x +8)+C

$$\int\frac{\mathrm{cos}\:{x}\:+\mathrm{cos}^{\mathrm{5}} \:{x}\:\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{2}}}\:\rightarrow\:{dx}=\frac{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:{x}}}{\mathrm{cos}\:{x}}{dt}\right] \\ $$$$= \\ $$$$... \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\int\left(\mathrm{sin}\:\mathrm{5}{t}\:−\mathrm{sin}\:\mathrm{3}{t}\:+\mathrm{2sin}\:{t}\:+\mathrm{3}\sqrt{\mathrm{2}}\right){dt}= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{20}}\mathrm{cos}\:\mathrm{5}{t}\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{12}}\mathrm{cos}\:\mathrm{3}{t}\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{cos}\:{t}\:+{t}= \\ $$$$... \\ $$$$=\mathrm{arcsin}\:\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{2}}}\:−\frac{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:{x}}}{\mathrm{15}}\left(\mathrm{3cos}^{\mathrm{4}} \:{x}\:−\mathrm{4cos}^{\mathrm{2}} \:{x}\:+\mathrm{8}\right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com