Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 135851 by Ñï= last updated on 16/Mar/21

∫_0 ^(π/2) (cos^2 x)ln(1+tan^4 x)dx=?

0π/2(cos2x)ln(1+tan4x)dx=?

Answered by mathmax by abdo last updated on 16/Mar/21

let Φ=∫_0 ^(π/2)  cos^2 x.log(1+tan^4 x)dx  we have cos^2 x =(1/(1+tan^2 x))  we do the channgement tanx=t ⇒  Φ=∫_0 ^∞  (1/(1+t^2 ))log(1+t^4 )(dt/(1+t^2 )) =∫_0 ^∞  ((log(1+t^4 ))/((t^2  +1)^2 ))dt let  f(a)=∫_0 ^∞  ((ln(1+at^4 ))/((t^2  +1)^2 ))dt   (a≥0) ⇒f^′ (a)=∫_0 ^∞  (t^4 /((at^4  +1)(t^2  +1)^2 ))dt  f^′ (a) =(1/2)∫_(−∞) ^(+∞)   (t^4 /(a(t^4  +(a^(1/4) )^4 )(t^2  +1)^2 ))dt (x_0 =a^(1/4) )  =(1/(2a))∫_(−∞) ^(+∞)  (t^4 /((t^2 −ix_0 ^2 (t^2 +ix_0 ^2 )(t−i)^2 (t+i)^2 ))dt ⇒  2af^′ (a) =∫_(−∞) ^(+∞)  (t^4 /((t−x_0 e^((iπ)/4) )(t+x_0 e^((iπ)/4) )(t−x_0 e^(−((iπ)/4)) )(t+x_0 e^(−((iπ)/4)) )(t−i)^2 (t+i)^2 ))  =2iπ{Res(w,x_0 e^((iπ)/4) )+Res(w,−x_0 e^(−((iπ)/4)) )+Res(w,i)}  Res(w,x_0 e^((iπ)/4) ) =((−x_0 ^4 )/(2x_0 e^((iπ)/4) (x_0 ^2 i+1)^2 ))  Res(w,−x_0 e^(−((iπ)/4)) ) =((−x_0 ^4 )/(−2x_0 e^(−((iπ)/4)) (−ix_0 ^2 +1)^2 ))  Res(w,i) =lim_(z→i)     {(t^4 /((t^4  +x_0 ^4 )(t+i)^2 ))}^((1))  =....  ...be continued....

letΦ=0π2cos2x.log(1+tan4x)dxwehavecos2x=11+tan2xwedothechanngementtanx=tΦ=011+t2log(1+t4)dt1+t2=0log(1+t4)(t2+1)2dtletf(a)=0ln(1+at4)(t2+1)2dt(a0)f(a)=0t4(at4+1)(t2+1)2dtf(a)=12+t4a(t4+(a14)4)(t2+1)2dt(x0=a14)=12a+t4(t2ix02(t2+ix02)(ti)2(t+i)2dt2af(a)=+t4(tx0eiπ4)(t+x0eiπ4)(tx0eiπ4)(t+x0eiπ4)(ti)2(t+i)2=2iπ{Res(w,x0eiπ4)+Res(w,x0eiπ4)+Res(w,i)}Res(w,x0eiπ4)=x042x0eiπ4(x02i+1)2Res(w,x0eiπ4)=x042x0eiπ4(ix02+1)2Res(w,i)=limzi{t4(t4+x04)(t+i)2}(1)=.......becontinued....

Commented by mathmax by abdo last updated on 16/Mar/21

let try another way Φ=∫_0 ^∞  ((log(1+t^4 ))/((t^2  +1)^2 ))dt ⇒  Φ=_(t=(1/x))     −∫_0 ^∞  ((log(1+(1/x^2 )))/(((1/x^2 )+1)^2 ))(−(dx/x^2 )) =∫_0 ^∞ x^4   ((log(1+x^2 )−2logx)/(x^2 (1+x^2 )^2 ))  =∫_0 ^∞   (x^2 /((1+x^2 )^2 ))(log(1+x^2 )−2logx)dx  =∫_0 ^∞  ((x^2 log(1+x^2 ))/((1+x^2 )^2 ))dx−2 ∫_0 ^∞  ((x^2 logx)/((1+x^2 )^2 ))dx=H−2K  we have  H=∫_0 ^∞   ((x^2 log(1+x^2 ))/((1+x^2 )^2 ))dx =∫_0 ^∞  (x/((1+x^2 )^2 ))(xlog(1+x^2 ))dx  by parts  u^′ =(x/((1+x^2 )^2 )) ⇒u =−(1/(2(1+x^2 ))) and v=xlog(1+x^2 ) ⇒  H =[−(1/(2(1+x^2 )))xlog(1+x^2 )]_0 ^∞ +∫_0 ^∞  (1/(2(1+x^2 )))(log(1+x^2 )+((2x^2 )/(1+x^2 )))dx  =(1/2)∫_0 ^∞  ((log(1+x^2 ))/(1+x^2 ))dx+∫_0 ^∞  (x^2 /(2(1+x^2 )^2 ))dx  ∫_0 ^∞  ((log(1+x^2 ))/(1+x^2 ))dx =_(x=tanθ)  ∫_0 ^(π/2)  ((log((1/(cos^2 θ))))/(1+tan^2 θ))(1+tan^2 θ)dθ  =−2∫_0 ^(π/2)  log(cosθ)dθ =−2(−(π/2)log2)=πlog2  ∫_0 ^∞  (x^2 /(2(1+x^2 )^2 ))dx =∫_0 ^∞  ((1+x^2 −1)/(2(1+x^2 )^2 ))dx =(1/2)∫_0 ^∞ (dx/(1+x^2 ))−(1/2)∫_0 ^∞ (dx/((1+x^2 )^2 ))(x=tanθ)  =(π/4)−(1/2)∫_0 ^(π/2)  ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ =(π/4)−(1/2)∫_0 ^(π/2)  cos^2 θdθ  =(π/4)−(1/4)∫_0 ^(π/2) (1+cos(2θ))dθ =(π/4)−(π/8)−(1/8)[sin(2θ)]_0 ^(π/2)   =(π/8) ⇒ H =(π/2)log(2)+(π/8)  K =∫_0 ^∞   ((x^2 logx)/((1+x^2 )^2 ))dx =∫_0 ^∞  (((x^2 +1−1)logx)/((x^2  +1)^2 ))dx  =∫_0 ^∞  ((logx)/(1+x^2 ))dx(=0)−∫_0 ^∞  ((logx)/((x^2  +1)^2 ))dx  we have  ∫_0 ^∞  ((logx)/((1+x^2 )^2 ))dx =∫_0 ^1 ((logx)/((1+x^2 )^2 ))dx+∫_1 ^∞  ((logx)/((1+x^2 )^2 ))dx(x=(1/t))  =∫_0 ^1  ((logx)/((1+x^2 )^2 ))dx −∫_0 ^1 ((−logt)/((1+(1/t^2 ))^2 ))(−(dt/t^2 )  =∫_0 ^1  ((logx)/((1+x^2 )^2 ))dx−∫_0 ^1   ((t^2 logt)/((t^2  +1)^2 ))dt  we have (1/(1+x^2 ))=Σ_(n=0) ^∞  (−1)^n  x^(2n)  ⇒  ((−2x)/((1+x^2 )^2 )) =Σ_(n=1) ^∞  2n(−1)^n  x^(2n−1)  ⇒(1/((1+x^2 )^2 ))  =Σ_(n=1) ^∞  n(−1)^(n−1)  x^(2n−2)  ⇒  ∫_0 ^1  ((logx)/((1+x^2 )^2 ))dx =Σ_(n=1) ^∞ n(−1)^n  (1/(2n−1))   ...be continued....

lettryanotherwayΦ=0log(1+t4)(t2+1)2dtΦ=t=1x0log(1+1x2)(1x2+1)2(dxx2)=0x4log(1+x2)2logxx2(1+x2)2=0x2(1+x2)2(log(1+x2)2logx)dx=0x2log(1+x2)(1+x2)2dx20x2logx(1+x2)2dx=H2KwehaveH=0x2log(1+x2)(1+x2)2dx=0x(1+x2)2(xlog(1+x2))dxbypartsu=x(1+x2)2u=12(1+x2)andv=xlog(1+x2)H=[12(1+x2)xlog(1+x2)]0+012(1+x2)(log(1+x2)+2x21+x2)dx=120log(1+x2)1+x2dx+0x22(1+x2)2dx0log(1+x2)1+x2dx=x=tanθ0π2log(1cos2θ)1+tan2θ(1+tan2θ)dθ=20π2log(cosθ)dθ=2(π2log2)=πlog20x22(1+x2)2dx=01+x212(1+x2)2dx=120dx1+x2120dx(1+x2)2(x=tanθ)=π4120π21+tan2θ(1+tan2θ)2dθ=π4120π2cos2θdθ=π4140π2(1+cos(2θ))dθ=π4π818[sin(2θ)]0π2=π8H=π2log(2)+π8K=0x2logx(1+x2)2dx=0(x2+11)logx(x2+1)2dx=0logx1+x2dx(=0)0logx(x2+1)2dxwehave0logx(1+x2)2dx=01logx(1+x2)2dx+1logx(1+x2)2dx(x=1t)=01logx(1+x2)2dx01logt(1+1t2)2(dtt2=01logx(1+x2)2dx01t2logt(t2+1)2dtwehave11+x2=n=0(1)nx2n2x(1+x2)2=n=12n(1)nx2n11(1+x2)2=n=1n(1)n1x2n201logx(1+x2)2dx=n=1n(1)n12n1...becontinued....

Commented by Ñï= last updated on 16/Mar/21

∫_0 ^(π/2) (cos^2 x)ln(1+tan^4 x)dx  =^(x→(π/2)−x) ∫_0 ^(π/2) (sin^2 x)ln(1+tan^4 x)dx−4∫_0 ^(π/2) (sin^2 x)ln(tan x)dx  ∫_0 ^(π/2) (cos^2 x)ln(1+tan^4 x)dx−∫_0 ^(π/2) (sin^2 x)ln(1+tan^4 x)dx=−4∫_0 ^(π/2) (sin^2 x)ln(tan x)dx=−π  ∫_0 ^(π/2) (cos^2 x)ln(1+tan^4 x)dx+∫_0 ^(π/2) (sin^2 x)ln(1+tan^4 x)dx=∫_0 ^(π/2) ln(1+tan^4 x)dx=(π/2)ln(6+4(√2))  ∫_0 ^(π/2) (cos^2 x)ln(1+tan^4 x)dx=(1/2)[−π+(π/2)ln(6+4(√2))]  ∫_0 ^(π/2) (sin^2 x)ln(1+tan^4 x)dx=(1/2)[π+(π/2)ln(6+4(√2))]

0π/2(cos2x)ln(1+tan4x)dx=xπ2x0π/2(sin2x)ln(1+tan4x)dx40π/2(sin2x)ln(tanx)dx0π/2(cos2x)ln(1+tan4x)dx0π/2(sin2x)ln(1+tan4x)dx=40π/2(sin2x)ln(tanx)dx=π0π/2(cos2x)ln(1+tan4x)dx+0π/2(sin2x)ln(1+tan4x)dx=0π/2ln(1+tan4x)dx=π2ln(6+42)0π/2(cos2x)ln(1+tan4x)dx=12[π+π2ln(6+42)]0π/2(sin2x)ln(1+tan4x)dx=12[π+π2ln(6+42)]

Commented by mathmax by abdo last updated on 16/Mar/21

from where come −π and sign + sir?

fromwherecomeπandsign+sir?

Commented by Ajetunmobi last updated on 17/Mar/21

  that is the proof for ∫_0 ^∞ ((ln(x))/((1+x^2 )^2 ))

thatistheprooffor0ln(x)(1+x2)2

Commented by Ajetunmobi last updated on 16/Mar/21

Commented by Ajetunmobi last updated on 17/Mar/21

  the proposal  can u show the full solution ?  because the integral is somehow elegant and   also lenghty in my view

theproposalcanushowthefullsolution?becausetheintegralissomehowelegantandalsolenghtyinmyview

Commented by mathmax by abdo last updated on 17/Mar/21

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 17/Mar/21

let use ∫_0 ^∞  p(x)ln(x)dx =−(1/2)Re(ΣRes (p(z)ln^2 (z),a_i ) we have  I=∫_0 ^∞  ((lnx)/((1+x^2 )^2 ))dx ⇒ϕ(z)=((ln^2 z)/((z^2  +1)^2 )) =((ln^2 z)/((z−i)^2 (z+i)^2 ))  Σ Res(ϕ,z_i ) =Res(ϕ,i) +Res(ϕ,−i)  Res(ϕ,i) =lim_(z→i) (1/((2−1)!)){((ln^2 z)/((z+i)^2 ))}^((1))   =lim_(z→i)    ((((2lnz)/z)(z+i)^2 −2(z+i)ln^2 z)/((z+i)^4 ))  =lim_(z→i)     ((((2lnz)/z)(z+i)−2ln^2 z)/((z+i)^3 )) =((4lni−2ln^2 i)/((2i)^3 ))  =((4ln(e^((iπ)/2) )−2(ln(e^((iπ)/2) ))^2 )/(−8i))=((2iπ−2(((iπ)/2))^2 )/(−8i))=−((2iπ−(π^2 /2))/(8i))  =(1/8)(−2π−((iπ^2 )/2))=−(π/4)−((iπ^2 )/(16))  Res(ϕ,−i)=lim_(z→−i)    (1/((2−1)!)){((ln^2 z)/((z−i)^2 ))}^((1))   =lim_(z→−i)    ((((2lnz)/z)(z−i)^2 −2(z−i)ln^2 z)/((z−i)^4 ))  =lim_(z→−i)     ((((2lnz)/z)(z−i)−2ln^2 z)/((z−i)^3 ))=((4ln(e^(−((iπ)/2)) )−2(ln(e^(−((iπ)/2)) ))^2 )/((−2i)^3 ))  =((−2iπ−2(−((iπ)/2))^2 )/(8i)) =((−2iπ−(π^2 /2))/(8i))=−(π/4)+((iπ^2 )/(16))  ⇒Σ Res(ϕ ,z_i ) =−(π/2) ⇒∫_0 ^∞  ((lnx)/((1+x^2 )^2 ))=−(1/2)(−(π/2))=(π/4)

letuse0p(x)ln(x)dx=12Re(ΣRes(p(z)ln2(z),ai)wehaveI=0lnx(1+x2)2dxφ(z)=ln2z(z2+1)2=ln2z(zi)2(z+i)2ΣRes(φ,zi)=Res(φ,i)+Res(φ,i)Res(φ,i)=limzi1(21)!{ln2z(z+i)2}(1)=limzi2lnzz(z+i)22(z+i)ln2z(z+i)4=limzi2lnzz(z+i)2ln2z(z+i)3=4lni2ln2i(2i)3=4ln(eiπ2)2(ln(eiπ2))28i=2iπ2(iπ2)28i=2iππ228i=18(2πiπ22)=π4iπ216Res(φ,i)=limzi1(21)!{ln2z(zi)2}(1)=limzi2lnzz(zi)22(zi)ln2z(zi)4=limzi2lnzz(zi)2ln2z(zi)3=4ln(eiπ2)2(ln(eiπ2))2(2i)3=2iπ2(iπ2)28i=2iππ228i=π4+iπ216ΣRes(φ,zi)=π20lnx(1+x2)2=12(π2)=π4

Commented by Ajetunmobi last updated on 17/Mar/21

welcome sir

welcomesir

Commented by Ajetunmobi last updated on 17/Mar/21

I dont know residue theorem though   but the answer is  −(𝛑/4)

Idontknowresiduetheoremthoughbuttheanswerisπ4

Commented by Ajetunmobi last updated on 17/Mar/21

the answer by the proposal is correct   but i dont really understand is solution   because the proposal never show the full  solution

theanswerbytheproposaliscorrectbutidontreallyunderstandissolutionbecausetheproposalnevershowthefullsolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com