Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139414 by mathdanisur last updated on 26/Apr/21

∫_( 0) ^( π/2) ((cos^2 x)/(cos(x−π/4))) dx

$$\underset{\:\mathrm{0}} {\overset{\:\pi/\mathrm{2}} {\int}}\frac{{cos}^{\mathrm{2}} {x}}{{cos}\left({x}−\pi/\mathrm{4}\right)}\:{dx} \\ $$

Commented by mr W last updated on 27/Apr/21

(1/2)[ln ((1+sin (x−(π/4)))/(1−sin (x−(π/4))))]_0 ^(π/2) =(1/2)ln ((1+((√2)/2))/(1−((√2)/2)))=ln (1+(√2))

$$\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\:\frac{\mathrm{1}+\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}−\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{4}}\right)}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}=\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$

Answered by Ar Brandon last updated on 27/Apr/21

=∫_0 ^(π/2) ((cos^2 x)/(cos(x−(π/4))))dx...(1), u=(π/2)−x  =∫_0 ^(π/2) ((sin^2 x)/(cos((π/4)−x)))dx=∫_0 ^(π/2) ((sin^2 x)/(cos(x−(π/4))))dx...(2)  (1)+(2)  =(1/2)∫_0 ^(π/2) ((cos^2 x+sin^2 x)/(cos(x−(π/4))))dx=(1/2)∫_0 ^(π/2) (dx/(cos(x−(π/4))))  =(1/2)[ln∣sec(x−(π/4))+tan(x−(π/4))∣]_0 ^(π/2)   =(1/2)[ln∣sec((π/4))+tan((π/4))∣−ln∣sec(−(π/4))+tan(−(π/4))∣]  =(1/2)[ln∣(√2)+1∣−ln∣(√2)−1∣]=(1/2)ln∣(((√2)+1)/( (√2)−1))∣=ln((√2)+1)

$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)}\mathrm{dx}...\left(\mathrm{1}\right),\:\mathrm{u}=\frac{\pi}{\mathrm{2}}−\mathrm{x} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)}\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)}\mathrm{dx}...\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}^{\mathrm{2}} \mathrm{x}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\mathrm{cos}\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\mid\mathrm{sec}\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)\mid\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\mid\mathrm{sec}\left(\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}\right)\mid−\mathrm{ln}\mid\mathrm{sec}\left(−\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\left(−\frac{\pi}{\mathrm{4}}\right)\mid\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\mid\sqrt{\mathrm{2}}+\mathrm{1}\mid−\mathrm{ln}\mid\sqrt{\mathrm{2}}−\mathrm{1}\mid\right]=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}\mid=\mathrm{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$

Commented by mathdanisur last updated on 30/Apr/21

thankyou sir

$${thankyou}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com