Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78334 by john santu last updated on 16/Jan/20

∫_0 ^(π/2)  [cos^2 (cos x)+sin^2  (sin x) ] dx

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\left[\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{cos}\:{x}\right)+\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{sin}\:{x}\right)\:\right]\:{dx} \\ $$

Commented by MJS last updated on 16/Jan/20

we cannot solve this integral but we can  approximate f(x)=cos^2  (cos x) +sin^2  (sin x)  by assuming it′s a shifted cosine  f(x)∼g(x)=1−sin^2  1 cos 2x =  plotting both we can see that the difference  between the two for 0≤x≤(π/4) is the same  for (π/4)≤x≤(π/2) with reversed sign ⇒  ⇒ ∫_0 ^(π/2) f(x)dx=∫_0 ^(π/2) g(x)dx=(π/2)

$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{but}\:\mathrm{we}\:\mathrm{can} \\ $$$$\mathrm{approximate}\:{f}\left({x}\right)=\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{cos}\:{x}\right)\:+\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{sin}\:{x}\right) \\ $$$$\mathrm{by}\:\mathrm{assuming}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{shifted}\:\mathrm{cosine} \\ $$$${f}\left({x}\right)\sim{g}\left({x}\right)=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\mathrm{1}\:\mathrm{cos}\:\mathrm{2}{x}\:= \\ $$$$\mathrm{plotting}\:\mathrm{both}\:\mathrm{we}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that}\:\mathrm{the}\:\mathrm{difference} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{two}\:\mathrm{for}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{for}\:\frac{\pi}{\mathrm{4}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\:\mathrm{with}\:\mathrm{reversed}\:\mathrm{sign}\:\Rightarrow \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{f}\left({x}\right){dx}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{g}\left({x}\right){dx}=\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com