Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87025 by john santu last updated on 02/Apr/20

∫_0 ^(π/2)  ((arc tan ((√2) tan x))/(tan x)) dx?

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{arc}\:\mathrm{tan}\:\left(\sqrt{\mathrm{2}}\:\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}?\: \\ $$

Commented by mathmax by abdo last updated on 02/Apr/20

let f(a) =∫_0 ^(π/2)  ((arctan(atanx))/(tanx))dx  with a>0  f^′ (a) =∫_0 ^(π/2)  ((tanx)/((1+a^2 tan^2 x)tanx))dx =∫_0 ^(π/2)  (dx/(1+a^2 tan^2 x))  =_(atanx =t)     ∫_0 ^(+∞)   (1/(1+t^2 ))×(1/(a(1+(t^2 /a^2 ))))dt =a∫_0 ^∞    (dt/((t^2  +1)(t^2  +a^2 )))  =(a/(a^2 −1))∫_0 ^∞ ((1/(t^2 +1))−(1/(t^2  +a^2 )))dt  =((πa)/(2(a^2 −1)))−(a/(a^2 −1)) ∫_0 ^∞   (dt/(t^2  +a^2 ))  we have ∫_0 ^∞  (dt/(t^2  +a^2 )) =_(t=aα)    ∫_0 ^∞   ((adα)/(a^2 (1+α^2 ))) =(1/a)(π/2) ⇒  f^′ (a) =((πa)/(2(a^2 −1)))−(/(a^2 −1))×(π/2)  =(π/(2(a^2 −1)))(a−1)  =(π/(2(a+1))) ⇒f(a) =(π/2)ln(a+1) +C  f(0) =0 =C ⇒f(a) =(π/2)ln(a+1) and  ∫_0 ^(π/2)  ((arctan((√2)tanx))/(tanx))dx =f((√2)) =(π/2)ln(1+(√2))

$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left({atanx}\right)}{{tanx}}{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$${f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{tanx}}{\left(\mathrm{1}+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} {x}\right){tanx}}{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} {x}} \\ $$$$=_{{atanx}\:={t}} \:\:\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{1}}{{a}\left(\mathrm{1}+\frac{{t}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)}{dt}\:={a}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)} \\ $$$$=\frac{{a}}{{a}^{\mathrm{2}} −\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }\right){dt}\:\:=\frac{\pi{a}}{\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{{a}}{{a}^{\mathrm{2}} −\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} } \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }\:=_{{t}={a}\alpha} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ad}\alpha}{{a}^{\mathrm{2}} \left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{{a}}\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)\:=\frac{\pi{a}}{\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{}{{a}^{\mathrm{2}} −\mathrm{1}}×\frac{\pi}{\mathrm{2}}\:\:=\frac{\pi}{\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right)}\left({a}−\mathrm{1}\right) \\ $$$$=\frac{\pi}{\mathrm{2}\left({a}+\mathrm{1}\right)}\:\Rightarrow{f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}}{ln}\left({a}+\mathrm{1}\right)\:+{C} \\ $$$${f}\left(\mathrm{0}\right)\:=\mathrm{0}\:={C}\:\Rightarrow{f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}}{ln}\left({a}+\mathrm{1}\right)\:{and} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left(\sqrt{\mathrm{2}}{tanx}\right)}{{tanx}}{dx}\:={f}\left(\sqrt{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$ \\ $$

Commented by Ar Brandon last updated on 02/Apr/20

cool

$${cool} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com