Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 187458 by mnjuly1970 last updated on 17/Feb/23

      Ω= ∫_0 ^( (π/2)) ((  2sin(x) − cos(x))/(sin(x) + cos (x))) dx = ?  −−−−

$$ \\ $$$$ \\ $$$$\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\:\mathrm{2}{sin}\left({x}\right)\:−\:{cos}\left({x}\right)}{{sin}\left({x}\right)\:+\:{cos}\:\left({x}\right)}\:{dx}\:=\:? \\ $$$$−−−− \\ $$

Answered by Frix last updated on 17/Feb/23

((2sin x −cos x)/(sin x +cos x))−(1/2)+(1/2)=  =((3(sin x −cos x))/(2(sin x +cos x)))+(1/2)=  =(1/2)−((3(√2)cos (x+(π/4)))/(2(√2)sin (x+(π/4))))  ∫_0 ^(π/2) ((1/2)−(3/2)cot (x+(π/4)))dx=  =[(x/2)−((3ln ∣sin (x+(π/4))∣)/2)]_0 ^(π/2) =(π/4)

$$\frac{\mathrm{2sin}\:{x}\:−\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}= \\ $$$$=\frac{\mathrm{3}\left(\mathrm{sin}\:{x}\:−\mathrm{cos}\:{x}\right)}{\mathrm{2}\left(\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\right)}+\frac{\mathrm{1}}{\mathrm{2}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}\sqrt{\mathrm{2}}\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{2}\sqrt{\mathrm{2}}\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{cot}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\right){dx}= \\ $$$$=\left[\frac{{x}}{\mathrm{2}}−\frac{\mathrm{3ln}\:\mid\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\mid}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 17/Feb/23

thanks alot

$${thanks}\:{alot} \\ $$

Answered by anurup last updated on 17/Feb/23

Ω=∫_0 ^(π/2) ((2sin x−cos x)/(sin x+cos x))dx −(1)  =∫_0 ^(π/2) ((2sin ((π/2)−x)−cos ((π/2)−x))/(sin ((π/2)−x)+cos ((π/2)−x)))dx  =∫_0 ^(π/2) ((2cos x−sin x)/(cos x+sin x))dx −(2)  (1)+(2) gives  2Ω=∫_0 ^(π/2) dx ⇒Ω=(π/4)

$$\Omega=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{2sin}\:{x}−\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{dx}\:−\left(\mathrm{1}\right) \\ $$$$=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{2sin}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)+\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{dx} \\ $$$$=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{2cos}\:{x}−\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}+\mathrm{sin}\:{x}}{dx}\:−\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:\mathrm{gives} \\ $$$$\mathrm{2}\Omega=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{dx}\:\Rightarrow\Omega=\frac{\pi}{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 17/Feb/23

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com