Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 210060 by SANOGO last updated on 29/Jul/24

∫_0 ^(+∞) (n/(sin^2 n+nx^2 ))dx

$$\int_{\mathrm{0}} ^{+\infty} \frac{{n}}{{sin}^{\mathrm{2}} {n}+{nx}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$

Answered by mr W last updated on 29/Jul/24

=∫_0 ^(+∞) (dx/((((sin n)/( (√n))))^2 +x^2 ))  =((√n)/(∣sin n∣))[tan^(−1) (((√n)x)/(∣sin n∣))]_0 ^(+∞)   =((√n)/(∣sin n∣))×(π/2)  =((π(√n))/(2∣sin n∣))

$$=\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\left(\frac{\mathrm{sin}\:{n}}{\:\sqrt{{n}}}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} } \\ $$$$=\frac{\sqrt{{n}}}{\mid\mathrm{sin}\:{n}\mid}\left[\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{{n}}{x}}{\mid\mathrm{sin}\:{n}\mid}\overset{+\infty} {\right]}_{\mathrm{0}} \\ $$$$=\frac{\sqrt{{n}}}{\mid\mathrm{sin}\:{n}\mid}×\frac{\pi}{\mathrm{2}} \\ $$$$=\frac{\pi\sqrt{{n}}}{\mathrm{2}\mid\mathrm{sin}\:{n}\mid} \\ $$

Commented by klipto last updated on 29/Jul/24

hot man

$$\boldsymbol{\mathrm{hot}}\:\boldsymbol{\mathrm{man}}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com