Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 219357 by SdC355 last updated on 23/Apr/25

∫_0 ^( ∞)    ((ln(z))/(z^2 +1)) dz

$$\int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{ln}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$

Answered by breniam last updated on 23/Apr/25

=∫_0 ^1 ((ln (z))/(z^2 +1))dz+∫_1 ^∞ ((ln(z))/(z^2 +1))dz  After we apply z^− =(1/z) substitution to the right integral we obtain  ∫_0 ^1 ((ln(z))/(z^2 +1))dz−∫_0 ^1 ((ln(z))/(z^2 +1))dz=0

$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\:\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{z}+\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{ln}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{z} \\ $$$$\mathrm{After}\:\mathrm{we}\:\mathrm{apply}\:\overset{−} {{z}}=\frac{\mathrm{1}}{{z}}\:\mathrm{substitution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{right}\:\mathrm{integral}\:\mathrm{we}\:\mathrm{obtain} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{z}−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{z}=\mathrm{0} \\ $$

Commented by Nicholas666 last updated on 23/Apr/25

good

$${good} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com