Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126298 by bramlexs22 last updated on 19/Dec/20

  ∫_( 0) ^( (√(ln (π/2)))) xe^x^2  sin (e^x^2  ) dx ?

$$\:\:\int_{\:\mathrm{0}} ^{\:\sqrt{\mathrm{ln}\:\left(\pi/\mathrm{2}\right)}} {xe}^{{x}^{\mathrm{2}} } \mathrm{sin}\:\left({e}^{{x}^{\mathrm{2}} } \right)\:{dx}\:? \\ $$

Answered by liberty last updated on 19/Dec/20

let v=e^x^2  ∧ dv=2xe^x^2  dx→ { ((x=0→v=1)),((x=(√(ln ((π/2))))→v=(π/2))) :}  V=∫_1 ^( π/2) (1/2)sin v dv =−(1/2)[ cos v ]_1 ^(π/2)   V=−(1/2)(0−cos 1)=(1/2)cos 1

$${let}\:{v}={e}^{{x}^{\mathrm{2}} } \wedge\:{dv}=\mathrm{2}{xe}^{{x}^{\mathrm{2}} } {dx}\rightarrow\begin{cases}{{x}=\mathrm{0}\rightarrow{v}=\mathrm{1}}\\{{x}=\sqrt{\mathrm{ln}\:\left(\frac{\pi}{\mathrm{2}}\right)}\rightarrow{v}=\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$${V}=\int_{\mathrm{1}} ^{\:\pi/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{v}\:{dv}\:=−\frac{\mathrm{1}}{\mathrm{2}}\left[\:\mathrm{cos}\:{v}\:\right]_{\mathrm{1}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${V}=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{0}−\mathrm{cos}\:\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{1} \\ $$

Answered by Olaf last updated on 19/Dec/20

I = ∫_0 ^(√(ln(π/2))) xe^x^2  sin(e^x^2  )dx  I = ∫_0 ^(√(ln(π/2))) −(1/2).(d/dx)cos(e^x^2  )dx  I = −(1/2)[cos(e^x^2  )]_0 ^(√(ln(π/2))) = ((cos(1))/2)

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{ln}\frac{\pi}{\mathrm{2}}}} {xe}^{{x}^{\mathrm{2}} } \mathrm{sin}\left({e}^{{x}^{\mathrm{2}} } \right){dx} \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{ln}\frac{\pi}{\mathrm{2}}}} −\frac{\mathrm{1}}{\mathrm{2}}.\frac{{d}}{{dx}}\mathrm{cos}\left({e}^{{x}^{\mathrm{2}} } \right){dx} \\ $$$$\mathrm{I}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos}\left({e}^{{x}^{\mathrm{2}} } \right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{ln}\frac{\pi}{\mathrm{2}}}} =\:\frac{\mathrm{cos}\left(\mathrm{1}\right)}{\mathrm{2}} \\ $$

Answered by Dwaipayan Shikari last updated on 19/Dec/20

e^x^2  =t      (1/2)∫_1 ^(π/2) sintdt =(1/2)cos(1)

$${e}^{{x}^{\mathrm{2}} } ={t}\:\:\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\frac{\pi}{\mathrm{2}}} {sintdt}\:=\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com