Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 172764 by Mathematification last updated on 01/Jul/22

∫_0 ^∞ (((ln(1−x))/x))^2  dx= ?

$$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\right)^{\mathrm{2}} \:\mathrm{dx}=\:? \\ $$

Answered by Mathspace last updated on 01/Jul/22

Υ=∫_0 ^∞   ((ln^2 (1−x))/x^2 )dx(u^′ =(1/x^2 )andv=ln^2 (1+x))  Υ=[−(1/x)ln^2 (1−x)]_0 ^(+∞)   +∫_0 ^∞ (1/x)(−2)ln(1−x)dx  =−2∫_0 ^∞   ((ln(1−x))/x)dx  ln^′ (1−x)=−(1/(1−x))=−Σ_(n=0) ^∞ x^n ⇒  ln(1−x)=−Σ_(n=0) ^∞ (u^(n+1) /(n+1)) +c(c=0)  =−Σ_(n=1) ^∞ (x^n /n) ⇒−((ln(1−x))/x)  =Σ_(n=1) ^∞ (x^(n−1) /n) ⇒  Υ=2Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^(n−1) dx  =2Σ_(n=1) ^∞ (1/n^2 )=2.(π^2 /6)=(π^2 /3)  Υ=(π^2 /3)

$$\Upsilon=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}^{\mathrm{2}} }{dx}\left({u}^{'} =\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{andv}={ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)\right) \\ $$$$\Upsilon=\left[−\frac{\mathrm{1}}{{x}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$$$+\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{x}}\left(−\mathrm{2}\right){ln}\left(\mathrm{1}−{x}\right){dx} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$${ln}^{'} \left(\mathrm{1}−{x}\right)=−\frac{\mathrm{1}}{\mathrm{1}−{x}}=−\sum_{{n}=\mathrm{0}} ^{\infty} {x}^{{n}} \Rightarrow \\ $$$${ln}\left(\mathrm{1}−{x}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty} \frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:+{c}\left({c}=\mathrm{0}\right) \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{x}^{{n}} }{{n}}\:\Rightarrow−\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{x}^{{n}−\mathrm{1}} }{{n}}\:\Rightarrow \\ $$$$\Upsilon=\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}} {dx} \\ $$$$=\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\mathrm{2}.\frac{\pi^{\mathrm{2}} }{\mathrm{6}}=\frac{\pi^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Upsilon=\frac{\pi^{\mathrm{2}} }{\mathrm{3}} \\ $$

Commented by Mathematification last updated on 08/Jul/22

@Mathspace Please check the third and fourth line again sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com