Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 164944 by mnjuly1970 last updated on 23/Jan/22

        Ω = ∫_0 ^( ∞)   e^( − (√x) ) .ln ((x)^(1/4)  )dx =?          −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Answered by Ar Brandon last updated on 24/Jan/22

Ω=∫_0 ^∞ e^(−(√x)) ln((x)^(1/4) )dx , x=t^2       =2∫_0 ^∞ te^(−t) ln((√t))dt=∫_0 ^∞ te^(−t) ln(t)dt      =(∂/∂α)∣_(α=1) ∫_0 ^∞ t^α e^(−t) dt=(∂/∂α)∣_(α=1) Γ(α+1)      =Γ(2)ψ(2)=1−γ

$$\Omega=\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{x}}} \mathrm{ln}\left(\sqrt[{\mathrm{4}}]{{x}}\right){dx}\:,\:{x}={t}^{\mathrm{2}} \\ $$$$\:\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {te}^{−{t}} \mathrm{ln}\left(\sqrt{{t}}\right){dt}=\int_{\mathrm{0}} ^{\infty} {te}^{−{t}} \mathrm{ln}\left({t}\right){dt} \\ $$$$\:\:\:\:=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {t}^{\alpha} {e}^{−{t}} {dt}=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{1}} \Gamma\left(\alpha+\mathrm{1}\right) \\ $$$$\:\:\:\:=\Gamma\left(\mathrm{2}\right)\psi\left(\mathrm{2}\right)=\mathrm{1}−\gamma \\ $$

Commented by mnjuly1970 last updated on 24/Jan/22

   thanks alot sir brandon

$$\:\:\:{thanks}\:{alot}\:{sir}\:{brandon} \\ $$

Commented by Ar Brandon last updated on 24/Jan/22

My pleasure, Sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com