Question Number 206773 by MaruMaru last updated on 24/Apr/24 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}= \\ $$$${I}^{\mathrm{2}} =\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dA} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right)\:\:{y}={r}\mathrm{sin}\left(\theta\right) \\ $$$${J}=\mid\frac{\partial\left({x},{y}\right)}{\partial\left({r},\theta\right)}\mid{drd}\theta={rdrd}\theta \\ $$$$\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{re}^{−{r}^{\mathrm{2}} } }{\left({r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{drd}\theta \\ $$ | ||
Commented by MaruMaru last updated on 24/Apr/24 | ||
![]() | ||
$${next}...??? \\ $$ | ||
Commented by Frix last updated on 24/Apr/24 | ||
![]() | ||
$$\mathrm{Differnt}\:\mathrm{paths}\:\mathrm{see}\:\mathrm{question}\:\mathrm{206549} \\ $$ | ||
Commented by MaruMaru last updated on 25/Apr/24 | ||
![]() | ||
$${wow}\:{thx} \\ $$ | ||