Question Number 219793 by SdC355 last updated on 02/May/25 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t}=? \\ $$ | ||
Answered by breniam last updated on 03/May/25 | ||
![]() | ||
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{t}={I} \\ $$$${f}\left({y}\right)=\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{e}^{−{ty}} }{{t}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{t} \\ $$$$\underset{{y}\rightarrow\infty} {\mathrm{lim}}{f}\left({y}\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)={I} \\ $$$${f}\left({y}\right)=\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} −{t}^{\mathrm{2}} \right){e}^{−{ty}} }{{t}^{\mathrm{2}} +\mathrm{1}}\mathrm{d}{t}=\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{ty}} \mathrm{d}{t}−{f}''\left({y}\right)= \\ $$$$\frac{\mathrm{1}}{{y}}−{f}''\left({y}\right)={f}\left({y}\right) \\ $$$${f}\left({y}\right)+{f}''\left({y}\right)=\frac{\mathrm{1}}{{y}} \\ $$$${f}\left({y}\right)=\mathrm{sin}\left({y}\right){g}\left({y}\right) \\ $$$${g}''\left({y}\right)\mathrm{sin}\left({y}\right)+\mathrm{2}{g}'\left({y}\right)\mathrm{cos}\left({y}\right)=\frac{\mathrm{1}}{{y}} \\ $$$${h}\left({y}\right)={g}'\left({y}\right) \\ $$$${h}'\left({y}\right)\mathrm{sin}\left({y}\right)+\mathrm{2}{h}\left({y}\right)\mathrm{cos}\left({y}\right)=\frac{\mathrm{1}}{{y}} \\ $$$${h}\left({y}\right)=\frac{{j}\left({y}\right)}{\mathrm{sin}^{\mathrm{2}} \left({y}\right)} \\ $$$$\frac{{j}'\left({y}\right)}{\mathrm{sin}\left({y}\right)}=\frac{\mathrm{1}}{{y}} \\ $$$${j}'\left({y}\right)=\frac{\mathrm{sin}\left({y}\right)}{{y}} \\ $$$${j}\left({y}\right)=\mathrm{Si}\left({y}\right)+{A} \\ $$$${h}\left({y}\right)={g}'\left({y}\right)=\frac{\mathrm{Si}\left({y}\right)}{\mathrm{sin}^{\mathrm{2}} \left({y}\right)}+\frac{{A}}{\mathrm{sin}^{\mathrm{2}} \left({y}\right)} \\ $$$${g}\left({y}\right)=−\mathrm{cot}\left({y}\right)\mathrm{Si}\left({y}\right)+\mathrm{Ci}\left({y}\right)−{A}\mathrm{cot}\left({y}\right)+{B} \\ $$$${f}\left({y}\right)=−\mathrm{cos}\left({y}\right)\mathrm{Si}\left({y}\right)+\mathrm{sin}\left({y}\right)\mathrm{Ci}\left({y}\right)−{A}\mathrm{cos}\left({y}\right)+{B}\mathrm{sin}\left({y}\right) \\ $$$$\underset{{y}\rightarrow\infty} {\mathrm{lim}}{f}\left({y}\right)=\mathrm{0}\Rightarrow{A}=−\frac{\pi}{\mathrm{2}}\wedge{B}=\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=−\mathrm{cos}\left(\mathrm{1}\right)\mathrm{Si}\left(\mathrm{1}\right)+\mathrm{sin}\left(\mathrm{1}\right)\mathrm{Ci}\left(\mathrm{1}\right)+\frac{\pi}{\mathrm{2}}\mathrm{cos}\left(\mathrm{1}\right) \\ $$ | ||