Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 221838 by Ghisom last updated on 11/Jun/25

∫_0 ^∞ (((arctan x)/x))^2 dx=?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\mathrm{arctan}\:{x}}{{x}}\right)^{\mathrm{2}} {dx}=? \\ $$

Answered by wewji12 last updated on 11/Jun/25

tan^(−1) (t)=ρ → dt=sec^2 (ρ)dρ  ∫_0 ^( (π/2))  ρ^2 cot^2 (ρ)sec^2 (ρ) dρ=∫_0 ^( (π/2))  ρ^2 csc^2 (ρ) dρ  ∫_0 ^( (π/2))  ρ^2 csc^2 (ρ) dρ≈2.1775860903......

$$\mathrm{tan}^{−\mathrm{1}} \left({t}\right)=\rho\:\rightarrow\:\mathrm{d}{t}=\mathrm{sec}^{\mathrm{2}} \left(\rho\right)\mathrm{d}\rho \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\rho^{\mathrm{2}} \mathrm{cot}^{\mathrm{2}} \left(\rho\right)\mathrm{sec}^{\mathrm{2}} \left(\rho\right)\:\mathrm{d}\rho=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\rho^{\mathrm{2}} \mathrm{csc}^{\mathrm{2}} \left(\rho\right)\:\mathrm{d}\rho \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\rho^{\mathrm{2}} \mathrm{csc}^{\mathrm{2}} \left(\rho\right)\:\mathrm{d}\rho\approx\mathrm{2}.\mathrm{1775860903}...... \\ $$

Commented by Ghisom last updated on 11/Jun/25

using software to get an approximation  is possible without substitution  this is boring  exact solution required

$$\mathrm{using}\:\mathrm{software}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{approximation} \\ $$$$\mathrm{is}\:\mathrm{possible}\:\mathrm{without}\:\mathrm{substitution} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{boring} \\ $$$$\mathrm{exact}\:\mathrm{solution}\:\mathrm{required} \\ $$

Answered by Frix last updated on 11/Jun/25

∫_0 ^∞ (((tan^(−1)  x)/x))^2 dx  Using Feynman′s Trick twice:  ∫_0 ^∞ ((tan^(−1)  ax)/x)×((tan^(−1)  bx)/x)dx  Partially differentiating twice  ∫_0 ^∞ (dx/((a^2 x^2 +1)(b^2 x^2 +1)))=  =(1/(a^2 −b^2 ))[atan^(−1)  ax −btan^(−1)  bx]_0 ^∞ =  =(π/(2(a+b)))  ∫_0 ^∞ (((tan^(−1)  x)/x))^2 dx=∫_0 ^1 ∫_0 ^1 (π/(2(a+b)))dadb=  =πln 2

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\mathrm{tan}^{−\mathrm{1}} \:{x}}{{x}}\right)^{\mathrm{2}} {dx} \\ $$$$\mathrm{Using}\:\mathrm{Feynman}'\mathrm{s}\:\mathrm{Trick}\:\mathrm{twice}: \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\mathrm{tan}^{−\mathrm{1}} \:{ax}}{{x}}×\frac{\mathrm{tan}^{−\mathrm{1}} \:{bx}}{{x}}{dx} \\ $$$$\mathrm{Partially}\:\mathrm{differentiating}\:\mathrm{twice} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{\left({a}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}\right)\left({b}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\left[{a}\mathrm{tan}^{−\mathrm{1}} \:{ax}\:−{b}\mathrm{tan}^{−\mathrm{1}} \:{bx}\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\frac{\pi}{\mathrm{2}\left({a}+{b}\right)} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\mathrm{tan}^{−\mathrm{1}} \:{x}}{{x}}\right)^{\mathrm{2}} {dx}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\pi}{\mathrm{2}\left({a}+{b}\right)}{dadb}= \\ $$$$=\pi\mathrm{ln}\:\mathrm{2} \\ $$

Commented by Ghisom last updated on 11/Jun/25

��

Commented by wewji12 last updated on 12/Jun/25

Wow great!!!!

$$\mathrm{Wow}\:\mathrm{great}!!!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com