Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37036 by ajfour last updated on 08/Jun/18

∫_0 ^(  a) (1−((b−x)/(√((b−x)^2 +cx)))) dx = ?

$$\int_{\mathrm{0}} ^{\:\:{a}} \left(\mathrm{1}−\frac{{b}−{x}}{\sqrt{\left({b}−{x}\right)^{\mathrm{2}} +{cx}}}\right)\:{dx}\:=\:? \\ $$

Commented by math khazana by abdo last updated on 09/Jun/18

I =a  −(1/2)∫_0 ^a    ((2(b−x) +2c)/(√((b−x)^2  +c)))dx  =a −∫_0 ^a       ((2(b−x) +c)/(2(√((b−x)^2  +cx))))dx −(c/2) ∫_0 ^a      (dx/(√((b−x)^2  +cx)))  =a−(√((b−x)^2  +cx))  −(c/2) ∫_0 ^a    (dx/(√(x^2  −2bx +b^2  +cx)))  but x^2  −2bx +b^2  +cx = x^2  +(c−2b)x +b^2   = x^2   +2 ((c−2b)/2) x + (((c−2b)^2 )/4) +b^2  −(((c−2b)^2 )/4)  =(x +((c−2b)/2))^2  + ((4b^2  −c^2  +4bc −4b^2 )/4)  =(x +((c−2b)/2))^2   + ((4bc −c^2 )/4)  case 1  if 4bc −c^2 >0 we use the changement  x+ ((c−2b)/2) =((√(4bc−c^2 ))/2) t   and  ∫_0 ^a      (dx/(√(x^2  +(c−2b)x +b^2 ))) = ∫_((c−2b)/(√(4bc−c^2 ))) ^((2a+c−b)/(√(4bc−c^2 )))     (1/(((√(4bc−c^2 ))/2)(√(1+t^2 )))) ((√(4bc−c^2 ))/2)dt  = [argsht]_((c−2b)/(√(4bc−c^2 ))) ^((2a+c−b)/(√(4bc−c^2  )))     =ln( ((2a+c)/(√(4bc−c^2 ))) +(√(1+(((2a+c)/(√(4bc−c^2 ))))^2 )) )  −ln( ((c−2b)/(√(4bc−c^2 ))) +(√(1+(((c−2b)/(√(4bc−c^2 ))))^2 ))) =A so  I = a−(√((b−x)^2  +cx))  −(c/2) A  case2 4bc−c^2 <0 ⇒(x +((c−2b)/2))^2  +((4bc−c^2 )/4)  =(x +((c−2b)/2))^2  − ((√((c^2 −4bc)/4)))^2  and we use  the chang. x+((c−2b)/2) =((√(c^2  −4bc))/2)   u  ...be continued...

$${I}\:={a}\:\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{\mathrm{2}\left({b}−{x}\right)\:+\mathrm{2}{c}}{\sqrt{\left({b}−{x}\right)^{\mathrm{2}} \:+{c}}}{dx} \\ $$$$={a}\:−\int_{\mathrm{0}} ^{{a}} \:\:\:\:\:\:\frac{\mathrm{2}\left({b}−{x}\right)\:+{c}}{\mathrm{2}\sqrt{\left({b}−{x}\right)^{\mathrm{2}} \:+{cx}}}{dx}\:−\frac{{c}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{a}} \:\:\:\:\:\frac{{dx}}{\sqrt{\left({b}−{x}\right)^{\mathrm{2}} \:+{cx}}} \\ $$$$={a}−\sqrt{\left({b}−{x}\right)^{\mathrm{2}} \:+{cx}}\:\:−\frac{{c}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{a}} \:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{bx}\:+{b}^{\mathrm{2}} \:+{cx}}} \\ $$$${but}\:{x}^{\mathrm{2}} \:−\mathrm{2}{bx}\:+{b}^{\mathrm{2}} \:+{cx}\:=\:{x}^{\mathrm{2}} \:+\left({c}−\mathrm{2}{b}\right){x}\:+{b}^{\mathrm{2}} \\ $$$$=\:{x}^{\mathrm{2}} \:\:+\mathrm{2}\:\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\:{x}\:+\:\frac{\left({c}−\mathrm{2}{b}\right)^{\mathrm{2}} }{\mathrm{4}}\:+{b}^{\mathrm{2}} \:−\frac{\left({c}−\mathrm{2}{b}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\left({x}\:+\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\:\frac{\mathrm{4}{b}^{\mathrm{2}} \:−{c}^{\mathrm{2}} \:+\mathrm{4}{bc}\:−\mathrm{4}{b}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\left({x}\:+\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\right)^{\mathrm{2}} \:\:+\:\frac{\mathrm{4}{bc}\:−{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${case}\:\mathrm{1}\:\:{if}\:\mathrm{4}{bc}\:−{c}^{\mathrm{2}} >\mathrm{0}\:{we}\:{use}\:{the}\:{changement} \\ $$$${x}+\:\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}{\mathrm{2}}\:{t}\:\:\:{and} \\ $$$$\int_{\mathrm{0}} ^{{a}} \:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+\left({c}−\mathrm{2}{b}\right){x}\:+{b}^{\mathrm{2}} }}\:=\:\int_{\frac{{c}−\mathrm{2}{b}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}} ^{\frac{\mathrm{2}{a}+{c}−{b}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}} \:\:\:\:\frac{\mathrm{1}}{\frac{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}{\mathrm{2}}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}{\mathrm{2}}{dt} \\ $$$$=\:\left[{argsht}\right]_{\frac{{c}−\mathrm{2}{b}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}} ^{\frac{\mathrm{2}{a}+{c}−{b}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} \:}}} \:\:\:\:={ln}\left(\:\frac{\mathrm{2}{a}+{c}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}\:+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{a}+{c}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}\right)^{\mathrm{2}} }\:\right) \\ $$$$−{ln}\left(\:\frac{{c}−\mathrm{2}{b}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}\:+\sqrt{\mathrm{1}+\left(\frac{{c}−\mathrm{2}{b}}{\sqrt{\mathrm{4}{bc}−{c}^{\mathrm{2}} }}\right)^{\mathrm{2}} }\right)\:={A}\:{so} \\ $$$${I}\:=\:{a}−\sqrt{\left({b}−{x}\right)^{\mathrm{2}} \:+{cx}}\:\:−\frac{{c}}{\mathrm{2}}\:{A} \\ $$$${case}\mathrm{2}\:\mathrm{4}{bc}−{c}^{\mathrm{2}} <\mathrm{0}\:\Rightarrow\left({x}\:+\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}{bc}−{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\left({x}\:+\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\right)^{\mathrm{2}} \:−\:\left(\sqrt{\frac{{c}^{\mathrm{2}} −\mathrm{4}{bc}}{\mathrm{4}}}\right)^{\mathrm{2}} \:{and}\:{we}\:{use} \\ $$$${the}\:{chang}.\:{x}+\frac{{c}−\mathrm{2}{b}}{\mathrm{2}}\:=\frac{\sqrt{{c}^{\mathrm{2}} \:−\mathrm{4}{bc}}}{\mathrm{2}}\:\:\:{u}\:\:...{be}\:{continued}... \\ $$

Commented by ajfour last updated on 09/Jun/18

thank you sir, am trying to  comprehend..

$${thank}\:{you}\:{sir},\:{am}\:{trying}\:{to} \\ $$$${comprehend}.. \\ $$

Commented by math khazana by abdo last updated on 09/Jun/18

you are welcome sir Ajfour

$${you}\:{are}\:{welcome}\:{sir}\:{Ajfour} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com