Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 219870 by SdC355 last updated on 03/May/25

∫_0 ^( ∞)  K_ν (r)dr  ∫_0 ^( ∞)  t∙Y_0 (t)dt  ∫_0 ^( ∞)   ((sin(t)e^(−kt) )/(t^2 +ρ^2 ))dt

$$\int_{\mathrm{0}} ^{\:\infty} \:{K}_{\nu} \left({r}\right)\mathrm{d}{r} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{t}\centerdot{Y}_{\mathrm{0}} \left({t}\right)\mathrm{d}{t} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}\left({t}\right){e}^{−{kt}} }{{t}^{\mathrm{2}} +\rho^{\mathrm{2}} }\mathrm{d}{t}\: \\ $$

Answered by MrGaster last updated on 04/May/25

Commented by MrGaster last updated on 04/May/25

Just substitute the numerical value.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com