Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 218771 by deleted50 last updated on 15/Apr/25

∫_0 ^( ∞)  J_ν (αt)J_ν (βt)dt=??  (α,β≠0)

$$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{\nu} \left(\alpha{t}\right){J}_{\nu} \left(\beta{t}\right)\mathrm{d}{t}=?? \\ $$$$\left(\alpha,\beta\neq\mathrm{0}\right) \\ $$

Answered by Nicholas666 last updated on 16/Apr/25

expresing the bassel  function of firts kind by    series where the factorials can be generalized    to gamma function for non integrals           n!=Γ(n+1)=nΓ(n) with n>0    J_ν (ax)=Σ_(ι=0) (((−1)^ι (ax)^(2ι+ν) )/(2^(2ι+ν) ι!(ν+ι)!))=(((ax)ν)/2^ν ) Σ_(ι=0) (((−1)^ι (ax)^(2ι) )/(2^(2ι) ι!(ν+ι)!))               J_ν (bx)=Σ_(ι=0) (((−1)^ι (bx)^(2ι+ν) )/(2^(2ι+ν) ι!(ν+ι)!))=(((bx)^ν )/2^ν )         Σ_(ι=0) (((−1)^ι (bx)^(2ι) )/(2^(2ι) ι!(ν+ι)!))   and aplying  the following formula     for the product of two series   Σ_(n=0) a^n x^n Σ_(n=0) b_n x^n =Σ_(n=0) (Σ_(k=0) a_k b_(n−k) )x^n   J_ν (ax)J_ν (bx)=(((abx^2 )/4))^ν    Σ_(ι=0) (Σ_(k=0) (((−1)^k (a^2 )^k )/(2^(2k) k!(ν+k)!)) (((−1)^(ι−k) (b^2 )^(ι−k) )/(2^(2(l−k)) (ι−k)!(ν+l−k)!)))x^(2l)   ∫J_ν (ax)J_ν (bx)dx=(((ab)/4))^ν Σ_(l=0) (((−1)^l b^(2l) )/2^(2l) )(Σ_(k=0) (((a/b)^(2k) )/(k!(l−k)!(ν+k)!(ν+l−k)!)))   ∫x^(2(l+ν)) dx=  =(((ab)/4))^ν Σ_(l=0) (((−1)^l b^(2l) )/(2^(2l) (2(l+ν)+1)))(Σ_(k=0) (((a/b)^(2k) )/(k!(l−k)!(ν+k)!(ν+l−k)!)))x^(2(l+ν)+1  )   useles work since the improver integral diverges     ∫_(0 ) ^∞ J_ν (ax)J_ν (bx)dx → ∞ ✓

$${expresing}\:{the}\:{bassel}\:\:{function}\:{of}\:{firts}\:{kind}\:{by}\:\: \\ $$$${series}\:{where}\:{the}\:{factorials}\:{can}\:{be}\:{generalized}\: \\ $$$$\:{to}\:{gamma}\:{function}\:{for}\:{non}\:{integrals}\:\:\:\:\:\: \\ $$$$\:\:\:{n}!=\Gamma\left({n}+\mathrm{1}\right)={n}\Gamma\left({n}\right)\:{with}\:{n}>\mathrm{0} \\ $$$$\:\:{J}_{\nu} \left({ax}\right)=\underset{\iota=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\iota} \left({ax}\right)^{\mathrm{2}\iota+\nu} }{\mathrm{2}^{\mathrm{2}\iota+\nu} \iota!\left(\nu+\iota\right)!}=\frac{\left({ax}\right)\nu}{\mathrm{2}^{\nu} }\:\underset{\iota=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\iota} \left({ax}\right)^{\mathrm{2}\iota} }{\mathrm{2}^{\mathrm{2}\iota} \iota!\left(\nu+\iota\right)!}\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:{J}_{\nu} \left({bx}\right)=\underset{\iota=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\iota} \left({bx}\overset{\mathrm{2}\iota+\nu} {\right)}}{\mathrm{2}^{\mathrm{2}\iota+\nu} \iota!\left(\nu+\iota\right)!}=\frac{\left({bx}\right)^{\nu} }{\mathrm{2}^{\nu} } \\ $$$$\:\:\:\:\:\:\:\underset{\iota=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\iota} \left({bx}\right)^{\mathrm{2}\iota} }{\mathrm{2}^{\mathrm{2}\iota} \iota!\left(\nu+\iota\right)!} \\ $$$$\:{and}\:{aplying}\:\:{the}\:{following}\:{formula}\: \\ $$$$\:\:{for}\:{the}\:{product}\:{of}\:{two}\:{series} \\ $$$$\:\underset{{n}=\mathrm{0}} {\sum}{a}^{{n}} {x}^{{n}} \underset{{n}=\mathrm{0}} {\sum}{b}_{{n}} {x}^{{n}} =\underset{{n}=\mathrm{0}} {\sum}\left(\underset{{k}=\mathrm{0}} {\sum}{a}_{{k}} {b}_{{n}−{k}} \right){x}^{{n}} \\ $$$${J}_{\nu} \left({ax}\right){J}_{\nu} \left({bx}\right)=\left(\frac{{abx}^{\mathrm{2}} }{\mathrm{4}}\right)^{\nu} \\ $$$$\:\underset{\iota=\mathrm{0}} {\sum}\left(\underset{{k}=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} \left({a}^{\mathrm{2}} \right)^{{k}} }{\mathrm{2}^{\mathrm{2}{k}} {k}!\left(\nu+{k}\right)!}\:\frac{\left(−\mathrm{1}\right)^{\iota−{k}} \left({b}^{\mathrm{2}} \right)^{\iota−{k}} }{\mathrm{2}^{\mathrm{2}\left({l}−{k}\right)} \left(\iota−{k}\right)!\left(\nu+{l}−{k}\right)!}\right){x}^{\mathrm{2}{l}} \\ $$$$\int{J}_{\nu} \left({ax}\right){J}_{\nu} \left({bx}\right){dx}=\left(\frac{{ab}}{\mathrm{4}}\right)^{\nu} \underset{{l}=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{l}} {b}^{\mathrm{2}{l}} }{\mathrm{2}^{\mathrm{2}{l}} }\left(\underset{{k}=\mathrm{0}} {\sum}\frac{\left({a}/{b}\right)^{\mathrm{2}{k}} }{{k}!\left({l}−{k}\right)!\left(\nu+{k}\right)!\left(\nu+{l}−{k}\right)!}\right) \\ $$$$\:\int{x}^{\mathrm{2}\left({l}+\nu\right)} {dx}= \\ $$$$=\left(\frac{{ab}}{\mathrm{4}}\right)^{\nu} \underset{{l}=\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{l}} {b}^{\mathrm{2}{l}} }{\mathrm{2}^{\mathrm{2}{l}} \left(\mathrm{2}\left({l}+\nu\right)+\mathrm{1}\right)}\left(\underset{{k}=\mathrm{0}} {\sum}\frac{\left({a}/{b}\right)^{\mathrm{2}{k}} }{{k}!\left({l}−{k}\right)!\left(\nu+{k}\right)!\left(\nu+{l}−{k}\right)!}\right){x}^{\mathrm{2}\left({l}+\nu\right)+\mathrm{1}\:\:} \\ $$$${useles}\:{work}\:{since}\:{the}\:{improver}\:{integral}\:{diverges}\:\:\: \\ $$$$\int_{\mathrm{0}\:} ^{\infty} {J}_{\nu} \left({ax}\right){J}_{\nu} \left({bx}\right){dx}\:\rightarrow\:\infty\:\checkmark \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com