Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 220015 by SdC355 last updated on 04/May/25

∫_0 ^( ∞)  ∣∣J_ν (r)∣∣e^(−rt)  dr=Σ_(h=1) ^∞  ∫_z_h  ^( z_(h+1) )  J_ν (r)e^(−rt) dr  z_j  is point of  J_ν (z)=0 , z_1 =0  Σ_(h=1) ^∞  [F(r,t)]_(r=z_h ) ^(r=z_(h+1) )    i can′t solve anymore

$$\int_{\mathrm{0}} ^{\:\infty} \:\mid\mid{J}_{\nu} \left({r}\right)\mid\mid{e}^{−{rt}} \:\mathrm{d}{r}=\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\int_{{z}_{{h}} } ^{\:{z}_{{h}+\mathrm{1}} } \:{J}_{\nu} \left({r}\right){e}^{−{rt}} \mathrm{d}{r} \\ $$$${z}_{{j}} \:\mathrm{is}\:\mathrm{point}\:\mathrm{of}\:\:{J}_{\nu} \left({z}\right)=\mathrm{0}\:,\:{z}_{\mathrm{1}} =\mathrm{0} \\ $$$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left[{F}\left({r},{t}\right)\right]_{{r}={z}_{{h}} } ^{{r}={z}_{{h}+\mathrm{1}} } \: \\ $$$$\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{solve}\:\mathrm{anymore} \\ $$

Answered by MrGaster last updated on 04/May/25

Σ_(h=1) ^∞ [−((J_ν (r)e^(−rt) )/t)]_(r=z_h ) ^(r=z_(h+1) ) =((J_ν (0))/t)+lim_(r→∞) ((J_ν (r)e^(−rt) )/t)  −((J_ν (0))/t)  −((J_ν (0))/t)=0 for ν>0  lim_(r→∞) ((J_ν (r)e^(−rt) )/t)=0  ∫_0 ^∞ J_ν (r)e^(−rt) dr=((((√(t^2 +1))−t)^ν )/( (√(t^2 +1))))

$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\left[−\frac{{J}_{\nu} \left({r}\right){e}^{−{rt}} }{{t}}\right]_{{r}={z}_{{h}} } ^{{r}={z}_{{h}+\mathrm{1}} } =\frac{{J}_{\nu} \left(\mathrm{0}\right)}{{t}}+\underset{{r}\rightarrow\infty} {\mathrm{lim}}\frac{{J}_{\nu} \left({r}\right){e}^{−{rt}} }{{t}} \\ $$$$\cancel{−\frac{{J}_{\nu} \left(\mathrm{0}\right)}{{t}}} \\ $$$$−\frac{{J}_{\nu} \left(\mathrm{0}\right)}{{t}}=\mathrm{0}\:\mathrm{for}\:\nu>\mathrm{0} \\ $$$$\underset{{r}\rightarrow\infty} {\mathrm{lim}}\frac{{J}_{\nu} \left({r}\right){e}^{−{rt}} }{{t}}=\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\infty} {J}_{\nu} \left({r}\right){e}^{−{rt}} {dr}=\frac{\left(\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−{t}\right)^{\nu} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Commented by MrGaster last updated on 04/May/25

Note: The original absolute value is unnecessary, so it is removed.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com